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ABSTRACT
We investigate the phase-space structure of the relativistic Sitnikov problem in the first post-
Newtonian approximation. The phase-space portraits show a strong dependence on the gravi-
tational radius which describes the strength of the relativistic pericentre advance. Bifurcations
appearing at various gravitational radii are presented. Transient chaotic behaviour related to
escapes from the primaries is also studied. Finally, the numerically determined chaotic saddle
is investigated in the context of hyperbolic and non-hyperbolic dynamics as a function of the
gravitational radius.

Key words: chaos – relativistic processes – scattering – methods: numerical – celestial
mechanics.

1 IN T RO D U C T I O N

The Sitnikov problem (SP) (Sitnikov 1960) is one of the simplest
dynamical systems in celestial mechanics that provides all kinds of
chaotic behaviour. The configuration of the system is defined by:
two point-like bodies of equal masses (called primaries) orbiting
around their common centre of mass due to their mutual gravita-
tional forces, and a third body of negligible mass moving along
a line, perpendicular to the orbital plane of the primaries, going
through their barycentre. For the circular motion of the primaries,
the problem is integrable and Macmillan (1911) gave a closed form
analytical solution with elliptic integrals. Moser (1973) showed the
existence of chaotic behaviour using symbolic dynamics.

In the last decades, the problem was investigated in details both
analytically and numerically. Liu & Sun (1990) derived a mapping
model to investigate the problem. Wodnar (1991) introduced a new
formulation for the equation of motion by using the true anomaly
of the primaries as an independent variable. Hagel & Lhotka (2005)
extended the analytical approximations up to very high orders by
using extensive computer algebra. Dvorak (1993) showed by nu-
merical computations that invariant curves exist for small oscilla-
tions around the barycentre. Alfaro & Chiralt (1993) determined
invariant rotational curves by applying the Birkhoff normal form
of an area-preserving mapping. Periodic solutions were studied by
Perdios & Markellos (1988), Belbruno, Llibre & Olle (1994), Jalali
& Pourtakdoust (1997), Kallrath, Dvorak & Schlöder (1997) and
Corbera & Llibre (2000). The complete phase space was studied
numerically by Dvorak (2007) and Kovács & Érdi (2007).

The SP is the perfect manifestation of a scattering process in
which a particle approaches a dynamical system from infinity, in-
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teracts with the system and ultimately the particle leaves it. Escapes
to infinity in SP were studied by Kovács & Érdi (2009). The test
particle can escape the system via different exits; thus one can de-
termine the basins of escape, since in these systems infinity acts as
an attractor for an escaping particle. A detailed study about basins
of escape can be found in Bleher et al. (1988) and Contopoulos
(2002).

An interesting question is how the structure of the phase space
changes due to relativistic effects. Since Robertson (1938) gave the
solution of the relativistic two-body problem in the post-Newtonian
(PN) approximation, many papers have dealt with pericentre ad-
vance in celestial mechanics, especially in the case of binary pul-
sars where the masses of celestial bodies are of the same mag-
nitude (Wagoner & Will 1976; Damour & Schäffer 1988). It is
an established fact that the pericentre precession in the PN two-
body problem is the same as in Schwarzschild’s metric (Landau &
Lifsic 1975; Damour & Deruelle 1985) expressed by the total mass.
Namely, the pericentre advance in one revolution is

�φ = 6π
k(m1 + m2)

ac2(1 − e2)
, (1)

where k represents the gravitational constant, m1 and m2 are the
masses of the bodies, and a and e describe the classical semimajor
axis and the eccentricity, respectively. In equation (1) c denotes the
speed of light.

The aim of the present work is to show the relativistic dynamics
of the SP by taking into account the leading PN ‘perturbation’.
The paper is organized as follows. In Section 2, we describe the
model: first, the PN two-body problem and then the relativistic
Sitnikov problem (RSP). Section 3 contains our numerical results.
Section 3.1 concentrates on the phase-space structure of the RSP,
and Section 3.2 deals with chaotic scattering. In Section 4, we draw
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our conclusions. The derivation of the equations of motion can be
found in the Appendix.

2 D E S C R I P T I O N O F TH E M O D E L

The SP is a particular case of the restricted three-body problem. The
third, mass-less body has no effect on the primaries’ motion, neither
in the classical nor in the relativistic case. Therefore, the problem
can be split into two parts. The solution of the two-body problem is
needed for the determination of the motion of the test particle. The
instantaneous position of primaries provides the time-dependent
driving acting on the test particle.

2.1 Post-Newtonian two-body problem

All our results are given in the leading PN approximation based
on an assumption of weak inter-body gravitational field and slow
orbital motions. Beyond the classical limit, it contains terms of the
order of v2/c2, where v is a typical orbital velocity and c is the speed
of light (Calura, Fortini & Montanari 1997).

Throughout this paper the length unit will be chosen as the semi-
major axis of the classical two-body problem: a = −km1m2/(2Ec),
where Ec is the classical energy in the centre of mass frame. The time
unit is taken as T = a3/2[k(m1 + m2)]−1/2 from Kepler’s third law.
The energy unit will be km1m2/a. The total dimensionless classical
energy becomes Ec = −0.5.

The equations of the relative motion in the PN centre of mass
frame can be derived from the Lagrangian given in Damour &
Deruelle (1985). The equation for the relative coordinate r reads in
dimensionless form up to the first order in λ as

r̈ = v̇ = − r
r3

+ λ

[
− (1 + 3ν)

r
r3

v2 + 3

2
ν

r
r5

(rv)2
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]
, (2)

where ν = m1m2/(m1 + m2)2 is the effective mass and

λ = k(m1 + m2)/ac2 (3)

denotes the dimensionless gravitational radius with a as the classi-
cal semimajor axis.

The invariance of the Lagrangian under time translation and spa-
tial rotation implies the existence of four first integrals, the energy
and the angular momentum of the binary system in the centre of
mass frame:
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(4)

This implies that the motion reduces to an effectively one-
dimensional bounded problem that in turn leads to a periodic time
dependence for all the variables. One can also derive the dimen-
sionless form of the period P between two consecutive pericentre
passages (Damour & Schäffer 1988). The pericentre advance and P
are given as

�φ = 6π
λ

1 − e2
c

, P = 2π

(−2E)3/2

[
1 + 1

4
(15 − ν)

λ

2

]
. (5)

The classical eccentricity is obtained from Ec and the classical
angular momentum Jc as

ec = [
1 − J 2

c

]1/2
. (6)

The relativistic orbital elements are then (Damour & Schäffer 1988)

a(λ) = − 1

2E
− (ν − 7)

λ

4
λ,

e(λ) =
[

1 + 2EJ 2 − λ

(
(ν − 6) −

(
5

4
ν − 15

2

)
J 2

c

)]1/2

. (7)

Since the masses of primaries are equal, we can set the value of
ν = 1/4. The solution of equations (2) provides the time-dependent
driving for the RSP.

2.2 The relativistic Sitnikov problem

To obtain the equation of the RSP we use the Lagrangian of the PN
three-body system (Landau & Lifsic 1975). The final form of the
equation is (for details see the Appendix)

z̈ = − z

ρ3
+ λ

[
5

4

z

rρ3
+ 16

2

z

ρ4
− v2z

ρ3

+ 6
ż2z

ρ3
+ 3

2

(vr)ż

ρ3
+ 3

16

(vr)2z

ρ5

]
, (8)

where z and ż are the dimensionless position and the velocity of
the test particle, respectively, and ρ = √

z2 + r2/4. The additional
terms in the bracket on the right-hand site of equation (8) describe
the relativistic effects on Sitnikov’s motion.

3 NUMERI CAL RESULTS

As initial conditions to the two-body problem, we take the initial
conditions at the pericentre in the form rperic = (1 − ec; 0) and
v = [0; ((1+ec)/(1−ec))1/2]. We shall fix the classical eccentricity
to be ec = 0.2 (Jc = 0.9797). The total energy is then

E = −1

2
+ λ

32

71 + 58ec + 3e2
c

(1 − ec)2
= −0.5 + 4.04λ. (9)

The period P up to the first order in λ is therefore

P = 2π(1 + 14λ). (10)

Our numerical investigations show that the PN approximation is
valid between 0 and some λc. We define the critical λc as a value
where the numerical results of the two-body problem differ from the
analytical results (5) by about 10 per cent. Although the equations
of motion (2) are valid up to the first order in λ, they are non-
linear equations and can provide results which are higher order in
λ or v2/c2. There is thus a threshold beyond which the numerical
solution no longer holds. Fig. 1 indicates that λc ≈ 0.035.

Due to the time periodic driving one can investigate the structure
of the three-dimensional phase space via stroboscopic or Poincaré
maps, like in the non-relativistic case.

3.1 Phase-space structure

Along with the gravitational radius, the orbital period changes,
as expressed by equation (10). Therefore, if data are stored corre-
sponding to the Keplerian orbital period, we obtain a confused phase
portrait. Looking at Fig. 2, one cannot distinguish islands or chaotic
bands, we see just ‘fuzzy’ curves and sparse points everywhere. In
order to get a ‘transparent’ phase portrait, the new period, P, of the
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Figure 1. Analytical and numerical solutions of the relativistic two-body
problem. Upper panel: period P. Solid line – numerical solution; dash–
dotted – analytical solution given by equation (10). Lower panel: pericentre
advance; solid line – numerical solution; dash–dotted – analytical solution
given by equation (5).

Figure 2. Stroboscopic phase portrait of the RSP (λ = 0.005) taken with
the classical period of the two-body problem. Initial conditions are taken
from the interval 0.05 ≤ z ≤ 3.0 (�z = 0.05) and ż = 0.

primaries’ revolution or a redefined Poincaré map is needed. In this
paper, figures are plotted corresponding to the Poincaré map taken
at r = rperic, when the primaries are in the pericentre.

Fig. 3 shows this Poincaré map that allows us to investigate the
phase space as usual. One can indeed see the pattern typical of
conservative dynamics.1 By comparing the relativistic (Fig. 3) and
the classical phase portraits (Fig. 4), the structure is different but
the Hamiltonian characteristics remain.

The RSP has one new parameter, the gravitational radius λ. The
qualitative features of the phase space depends then on λ only. One
can see from Figs 3 and 4 that even a small λ can change the
phase portrait dramatically. For λ = 0.005 the main difference to
the classical case is the modified surroundings of the 2:1 resonance.
The central region is similar to the classical case; invariant tori are
situated around the stable origin. However, the main islands corre-
sponding to the 2:1 resonance are changed. The irregularly scattered

1 For simplicity, instead of the canonically conjugated (z, pz) coordinates we
use the traditional (z, ż) coordinates, although it makes the Poincaré map
not exactly area preserving. This map is smoothly conjugated to the area
preserving one.

Figure 3. Phase portrait of the RSP at λ = 0.005 taken at the pericentre
passage of the primaries. Initial conditions are the same as in Fig. 2.

Figure 4. Phase-space portrait of the classical SP at e = ec = 0.2, taken at
times 2π, 4π, 6π, . . . Initial conditions are the same as in Fig. 2.

points around the islands of stability represent the trajectories that
can escape the system sooner or later.

Fig. 5 shows three phase portraits for different values of the
gravitational radius λ. One can draw several conclusions from these
plots. First, it is evident that the central stable region is shrinking
when λ becomes larger. It means, if the perturbation is larger, the
domain of the ordered motion is smaller. Secondly, the size of
the island of the 2:1 resonance becomes larger along the direction
parallel to the z-axis and smaller perpendicular to it. During this
process, the perimeter of the island increases resulting in a longer
island chain around the last KAM-torus. Consequently, there are
longer Cantori which the scattered trajectories can stick to during
the scattering process. We will see this in the next section.

We have identified a bifurcation at λ ≈ 0.03. The qualitative
change due to the increasing gravitational radius is well-seen in
Fig. 6. Panel (a) shows the right island of the 2:1 resonance with
one stable elliptic fixed point on the phase portrait sitting in the
middle of the regular island. However, for larger λ [panels (b) and
(c)] the stable periodic orbit becomes unstable and two new elliptic
fixed points appear to the left and right.

In order to show another picture about how the phase space
changes with λ, we plotted the escape times in a contour plot (Fig. 7).
If the mechanical energy of the test particle becomes positive, the
trajectory never returns to the primaries’ plane, i.e. the test particle
leaves the system. In Fig. 7, different colours represent different
escape times in the (λ, z) plane. The contour plot was made as
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Figure 5. Phase portraits for different gravitational radii (a): λ = 0.015, (b): λ = 0.025, (c): λ = 0.035. The central stable region becomes smaller from left to
right. Moreover, the different shape of the island of the 2:1 resonance shows the sensitivity to λ. Panel (c) exhibits a phase-space section after a bifurcation at
λ = 0.032.

Figure 6. Bifurcation due to changing the gravitational radius about λ ≈ 0.03. Panel (a)–(c): λ = 0.028, λ = 0.03, λ = 0.032. The originally stable periodic
orbit (2:1 resonance) becomes unstable and two new stable fixed points appear in the phase portrait.

Figure 7. Escape times of the trajectories that originate from (z, ż = 0) on
the (λ, z) parameter plane. When the test-particle has positive energy, we
store the integration time as the escape time of the orbit. This contour map
was calculated over 100 periods of primaries (i.e. roughly 628 time units; see
the colour bar on the right-hand side). The central stable region and the right
island of the 2:1 resonance (around z ≈ 2.0) are plotted in light grey (orange
online). These trajectories belong to periodic or quasi-periodic orbits and
never escape. However, there are other regions far from the stable islands
where the escape times are higher than many orbital periods of primaries.
These parts of the phase plane contain the stable manifold of the chaotic
saddle.

follows. We have chosen 250 initial conditions along the z-axis
in [0; 8] with initial velocity zero, and 500 values of λ from the
interval [0; 0.035]. The escape times, i.e. the time needed to reach
the state where the energy of the particle becomes positive, were
computed at the grid points of the (λ, z) lattice and plotted with
different colours. Fig. 7 allows us to see the evolution of the extent
of the stable islands (where the lifetime is maximal) and filamentary
structures. One can see pitchfork bifurcations when λ is growing at
λ ≈ 0.032. Beyond the value λ ≈ 0.012 the island of 1:1 resonance
(z ≈ 0.75) becomes separated from the main central stable region. In

other words, trajectories between the resonant island and the central
invariant curves may escape to the infinity (Figs 5a and 7). The bright
coloured filaments with higher escape times correspond to a fractal
set representing the stable manifold of a chaotic saddle existing
far from the stability islands (Kovács & Érdi 2009). Trajectories
originating from these initial conditions can spend very long time
around the primaries’ plane before leaving the system.

We can say that the parameter λ plays a similar role in the RSP
as the eccentricity in the classical case. Varying the gravitational
radius beyond a fixed eccentricity, we obtain qualitative changes in
the phase space as is common in Hamiltonian dynamics. A complete
picture of the phase space of the classical SP was published in
Dvorak (2007) where escape times show a structure similar to that
of Fig. 7.

3.2 Chaotic scattering

In the previous section, we have seen that there are initial conditions
which correspond to long life times. Transient chaos appears as a
scattering process in conservative dynamics (Eckhardt 1987; Jung
& Scholz 1987; Bleher, Ott & Grebogi 1989). In our example the
test particle comes close to the primaries’ plane and makes several
oscillations before escaping. One can ask where the long-lived tra-
jectories are in the phase space. In order to answer this question, a
large number of points are distributed uniformly in the phase space
and their evolution in time is followed. We are interested in non-
escaping trajectories in a preselected region. Before the trajectories
leave the system they draw out a well-defined fractal set in surfaces
of sections (Ott 1993). The invariant object in the phase space re-
sponsible for the transient chaotic behaviour is the chaotic saddle.
They characterize the dynamics in a way chaotic bands characterize
permanent chaos. It was also shown that these invariant saddles have
two different parts. One of them, the hyperbolic part, is responsible
for short lifetimes, and the other one, the non-hyperbolic part, is
situated close to the border of the KAM-tori and is associated with
the sticky orbits (Tél & Gruiz 2006; Altmann & Tél 2008).
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Figure 8. Number N(t) of non-escaped trajectories from a preselected box
(−10 ≤ z ≤ 10) in the phase space. Different marks represent different
values of λ: triangles – 0; diamonds – 0.005; crosses – 0.015; asterisks –
0.025; squares – 0.035. The escape rates can be obtained from the slope of
the fitted lines on log-lin plot (see the inset on the right). The corresponding
escape rates are shown in Table 1. Initial conditions: 6 ≤ z ≤ 6.8, |ż| ≤ 0.1.

3.2.1 Short time escape

In truly hyperbolic systems, the number of non-escaping trajectories
decreases exponentially (Kantz & Grassberger 1985). However, in
the Sitnikov and also in the RSP we have regular islands in the phase
portraits, i.e. the phase space is mixed. There are both hyperbolic
and non-hyperbolic parts present. In this case, the decrease of the
survivors follows the exponential rule only for shorter times, as
shown in Fig. 8.

If we choose the initial conditions far from regular islands (e.g.
6 ≤ z ≤ 6.8 and −0.1 ≤ ż ≤ 0.1), the dynamics can be considered to
be hyperbolic. Fig. 8 shows the number of non-escaped trajectories
for different gravitational radii. One can see that the first segments
of the curves follow different straight lines in the log-lin plot, N(t) ∼
e−κt. The escape rate, κ , whose inverse tells us the average lifetime
of chaos, can be obtained from the slope of these lines. The inset
shows that the slopes are not equal. For various λ we get different
escape rates (see Table 1).

The chaotic saddle responsible for the finite time chaotic motion
has a double-fractal structure. One can consider this object as the
union of all the hyperbolic unstable periodic orbits and the inter-
sections of their stable and unstable manifolds (Tél & Gruiz 2006).
In other words, the scattered test-particle jumps randomly on the
saddle before leaving it. One can see the numerically determined
saddles for various gravitational radii in Fig. 9. If the number N0

of initial conditions is large enough, the implemented method (Tél
& Gruiz 2006) allows us to visualize the saddle itself. We suppose
that the initial point of a trajectory lies close to the stable manifold
of the chaotic saddle, and we follow the evolution of this point for-
ward in time. After some iteration it must be in the vicinity of the

Table 1. Escape rates and average lifetimes. The greater λ

the shorter the average lifetime of chaos. The function κ(λ)
is close to be linear.

λ Escape rate,κ Escape time, 1/κ Errors

0.0 0.007 142.8 ±1.4 × 10−5

0.005 0.008 125.0 ±1.5 × 10−5

0.015 0.010 92.6 ±2 × 10−5

0.025 0.012 80.6 ±3.8 × 10−5

0.035 0.013 75.8 ±4.7 × 10−5

unstable manifold of the saddle. A suitable integration time t0 can
be determined from the average lifetime, 1/κ , of chaos. We have
chosen t0 ≈ (2–4)/κ . Consequently, the mid-point taken at t ≈ t0/2
of the trajectory should be close to the saddle. In order to generate
the chaotic saddles of Fig. 9, we stored the mid-points of the tra-
jectories that do not escape a preselected box (|z| ≤ 10 |ż| ≤ 2) in
time t0.

The size of the chaotic saddle decreases in Fig. 9 when λ is
growing and the scenario in Fig. 9 is similar to that in Fig. 5. The
double Cantor structure is dominant but empty holes appear at the
sites of regular islands. This is the consequence of the quasi-periodic
motion on tori which is permanent and certainly not chaotic, but
can be arbitrarily close to the chaotic saddle.

3.2.2 Long time escape – stickiness

For longer times the number of non-escaping trajectories does not
follow the exponential decay. Instead, one observes a power-law
decay which is slower than the exponential one, N(t) ∼ t−σ . It is an
established fact that trajectories which come close to the outer bor-
der of the stability islands may stick to them through the debris of
the previously destroyed KAM curves. A geometrical consequence
of the stickiness effect in the phase space is the denser saddle struc-
ture. In other words, one can observe the remnants of previously
destroyed KAM-tori, the so-called Cantori, around the stability is-
lands, and this part can be identified as the non-hyperbolic part of
the chaotic saddle.

Our numerical investigations support the theoretical results,
namely, exponent σ does not depend on the parameters of the dy-
namical systems. From fitting straight lines to the points between
500 and 1500 in Fig. 10, we find σ ≈ 3.6 irrespective of λ.

3.2.3 Basins of escape

In general, when the test particle escapes the system, i.e. never
comes back, it approaches infinity. Therefore, although in conser-
vative systems there are no attractors, one can consider infinity as an
attractor of the system. In other words, beyond the escape energy,
infinity behaves as an attractor for those trajectories which leave the
system.

Initializing many initial conditions in a fine rectangular grid one
can identify the basins of escape (Fig. 11). In the RSP the test-
particle may leave the system upwards or downwards from the
primaries’ plane depending on the initial conditions of the trajec-
tory; two basins of escape can be identify, the basins of +∞ and
−∞, respectively. Fig. 11(a) shows these basins. The white region
contains initial conditions that provides the orbits escaping the sys-
tem upwards; points marked with dark grey colour correspond to
the orbits leaving the system downwards. The third part of the phase
portrait (light grey) belongs to regular islands the trajectories never
escape from. Considering only the basins of escape one can see the
very complex structure of the boundary. The fine-scale structure of
the boundary shows that it is not a simple curve, rather a fractal set.
Fractality is in general a result of chaotic motion (McDonald et al.
1985; Ott 1993).

Let us consider the analogy with dissipative systems where the
stable manifold of hyperbolic unstable fixed points provide the
boundary of the basin of attraction. Fig. 11(b) shows the stable
manifold of the chaotic saddle, i.e. the initial conditions of those
trajectories which remain for very long time in the system. The
correspondence is evident between panels (a) and (b). We point
out that the fractal basin boundary of escape in open Hamiltonian
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Figure 9. Chaotic saddles for different gravitational radii, (a) λ = 0.015; (b) λ = 0.025 and (c) λ = 0.035. The structure of the saddle far from the ordered
regions is similar in each panel, that of the so-called double fractal sets. The shape of the saddle changes more dramatically close to the stability islands. It is
evident that the tori do not belong to the saddle. In the numerical simulations N0 = 5 × 105. The integration time t0 used in the algorithm is t0 = 150 for (a)
and t0 = 180 for (b) and (c).

Figure 10. The log–log plot of the number N(t) of non-escaped trajectories.
Power-law decay holds in the non-hyperbolic part of the saddle. Trajectories
that can come close to the outer KAM-tori may spend very long time around
them. The exponent in the power-law decay describes the escape rate of these
sticky trajectories. The value of σ is not as sensitive as κ but our results
show that a small fluctuation can be detected related to the size of Cantori
surrounding the quasi-periodic regions. The parameters and notation are the
same as in Fig. 8.

systems, which is a result of chaotic scattering, is identical with the
stable manifold of the chaotic saddle responsible for transient chaos
(see also Tél & Gruiz 2006; Ernst et al. 2008).

4 C O N C L U S I O N S

In this work, we have investigated the RSP numerically. The motiva-
tion was to show how the structure of the phase plane changes under
the influence of general relativity. The model contains the first PN
relativistic corrections, derived from the leading order relativistic
Lagrangian. Besides the eccentricity of primaries the gravitational
radius is the new parameter of the system that is related to the
pericentre shift of the two large bodies.

The calculations show that the problem remains a driven system
but the new driving period corresponds to the relativistic orbital
period of the binaries. Therefore, a new stroboscopic or Poincaré
map was required to correctly visualize the phase-space structure.
We found that the Poincaré section exhibits the well-known pic-
ture of Hamiltonian chaos. Moreover, changing the parameter λ,
the phase portrait’s structure shows qualitative changes. We have
pointed out the shrinking of the central regular domain when the
gravitational radius becomes larger and simultaneously several bi-
furcations occurred to the 2:1 resonance. In order to investigate the
chaotic scattering through escapes, we have integrated a large num-
ber of initial conditions. Two different types of escapes, short and

Figure 11. Fractal patterns for λ = 0.035. (a) Basin boundary. A large
number N0 = 1.6 × 105 of points was integrated forward to see which escape
route they chose. The dark grey (in red online) (white) region represents
initial conditions leading to an escape to minus (plus) infinity. Light grey
(orange online) marks the ordered motion inside the regular islands. The
very complex structure of the basin boundary indicates chaotic motion. Grid
size: 0 ≤ z ≤ 8, �z = 0.008; −2 ≤ ż ≤ 2, �ż = 0.004. (b) Stable
manifold of the chaotic saddle in the RSP. One can see that the filamentary
structure of the stable manifold and the fractal basin boundary of the escapes
are identical as it is well-known from dissipative systems.

long time escape, were distinguished to identify the dual structure
of the chaotic saddle. Short time escapes belong to the hyperbolic
part of the saddle; the number of non-escaping trajectories from
a preselected region decreases exponentially. During the scatter-
ing process such trajectories draw out the double fractal set of the
chaotic saddle in the phase space. Escape rates corresponding to
different value of gravitational radii show a nearly linear increase
with λ. The number of trajectories with longer lifetime follows a
power-law decay. Such long time escape characterizes the so-called
sticky orbits which may spend very long time in Cantori around
the stability islands. The exponent describing the leakage of sticky
trajectories seems to not depend on λ. From a more general point
of view, our results demonstrate that transient chaos and chaotic
scattering are robust phenomena in celestial mechanics as weak
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relativistic effects are unable to destroy them. Perturbations change
the characteristic numbers, at most.
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APPENDIX A : EQUATION O F MOTION
F O R TH E R S P

We consider the motion of three gravitating masses in the first PN
approximation of general relativity. The first and second particles
have the same mass M, opposite velocities, and they revolve in the
x − y plane around the centre of mass which is at the origin. Their
separation and relative velocity are denote by r and v, respectively.
In other terms,

m1 = m2 = M, r1 = −r2 = 1

2
r, v1 = −v2 = 1

2
v. (A1)

The mass m of the third particle is negligible compared to M. This
third particle moves along the z-axis. Let us denote |r1 − r3| =
|r2 − r3| by ρ. Clearly

ρ =
√( r

2

)2
+ z2. (A2)

The Lagrangian of the third particle can be derived from the three-
particle Lagrangian (Landau & Lifsic 1975) by considering r and
v as given functions of the time. We get (by omitting full time
derivatives)

L = m

2
ż2 + 3kmM

2c2ρ

(
1

2
v2 + 2ż2

)
+ mż4

8c2
+ 2kmM

ρ

+ kmM

4c2ρ3
(vr)zż − 2k2mM2

c2rρ
− k2mM(m + 2M)

c2ρ2
, (A3)

or, since m � M,

L = m

2
ż2 + 3

4

kmM

c2ρ
v2 + 3

kmM

c2ρ
ż2 + 1

8

mż4

c2
+ 2

kmM

ρ

+ 1

4

kmM

c2ρ3
(vr)zż − 2

k2mM2

c2rρ
− 2

k2mM2

c2ρ2
. (A4)

The partial derivatives of L are

pz = ∂L

∂ż
= mż + 6

kmM

c2ρ
ż + 1

2

mż3

c2
+ 1

4

kmM

c2ρ3
(vr)z, (A5)

∂L

∂z
= −3

4

kmM

c2ρ3
v2z − 3

kmM

c2ρ3
ż2z − 2

kmM

ρ3
z

− 3

4

kmM

c2ρ5
(vr)z2ż + 1

4

kmM

c2ρ3
(vr)ż + 2

k2mM2

c2rρ3
z

+ 4
k2mM2

c2ρ4
z.

(A6)

When deriving the equation of motion, in the correction terms we
replace the second derivatives with their zeros order expressions,
namely

v̇ = −2
kM

r3
r, z̈ = −2

kM

ρ3
z. (A7)

Further, we use the relation

ρ̇ = 1

4

vr

ρ
+ żz

ρ
(A8)

to obtain

z̈ = −2
kM

ρ3
z + 16

k2M2

c2ρ4
z + 6

kM

c2ρ3
ż2z + 3

2

kM

c2ρ3
(vr)ż

+ 3

16

kM

c2ρ5
(vr)2z − kM

c2ρ3
v2z + 5

2

k2M2

c2rρ3
z. (A9)

After rearranging terms,

z̈ = −2
kM

ρ3
z + 5

2

k2M2

c2rρ3
z + 16

k2M2

c2ρ4
z − kM

c2ρ3
v2z

+ 6
kM

c2ρ3
ż2z + 3

2

kM

c2ρ3
(vr)ż + 3

16

kM

c2ρ5
(vr)2z. (A10)

In order to obtain the dimensionless equations, first, we take the
semimajor axis (a) of the Keplerian orbit as unit length. Conse-
quently, the unit of the velocity is a/T , where T denotes the time
unit. As in Section 2.1 we choose T as a3/2/(k2M)1/2 corresponding
to Kepler’s third law (up to a constant 2π). Thus, the dimensionless
equation from (A10) is obtained as equation (8) in the main text.
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