
Tipping phenomena in typical dynamical systems subjected to

parameter drift: Supplementary Information

Bálint Kaszás,

Institute for Theoretical Physics, Eötvös Loránd University,

Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary

Ulrike Feudel,

Theoretical Physics/Complex Systems, ICBM,

University of Oldenburg, 26129 Oldenburg, Germany

Tamás Tél,

Institute for Theoretical Physics, Eötvös Loránd University,

Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary, and

MTA-ELTE Theoretical Physics Research Group,

Pázmány Péter Sétány 1/A, H-1117 Budapest Hungary

1



SUPPLEMENTARY DISCUSSION I: THE MODEL

We consider the paradigmatic example of a pendulum with a periodically forced suspen-

sion point, where the amplitude C of this forcing changes in time. The dimensionless equation

of motion for the angle x, taken with respect to the vertical, of this driven mathematical

pendulum reads as [35]:

ẋ = y, ẏ = −γ2 sin(x)− 2βy + C(t) cos (x) cos (t). (S1)

The dimensionless driving period is T = 2π, chosen as the time unit throughout the pa-

per. Parameter γ represents the dimensionless frequency of the pendulum’s small amplitude

swingings without driving and dissipation, and β is a friction constant. In our numerical

study we fix the values of γ = 1/3 and of β = 0.05. The control parameter scenario C(t) is

chosen in this paper from the class schematically described in Fig. 1b. The scenario is thus

markedly different from that studied in [12, 13] where forcing was switched off exponentially

in time until no forcing was applied any more and a resting state was reached. With a con-

stant driving amplitude C0 = 1.6 or 2, the dynamics is chaotic and possesses an underlying

chaotic attractor of large extension [35].

With any constant C, Eq. (S1) is invariant under the transformation x → −x, y → −y,
t → t − π (π = T/2). As a consequence, any periodic attractor appears in equivalent pairs

whose trajectories in the (x, y) state space are mirror images (with respect to the origin)

of each other with respect to the origin. In other words, each clockwise rotating attractor

has a counter-clockwise rotating counterpart. A particular example is provided by S. Fig. 1

presenting the two period-two limit cycles existing at a C value where no other attractors

exist.

Heavy dots mark the position of the two-cycles on a stroboscopic map taken at t = 0

mod T , the map used throughout the paper. One sees that no symmetry remains, and this

explains why the bifurcation diagram of Fig. 1a is not symmetric with respect to the x = 0

axis. Taking stroboscopic sections at other phases would lead to other pairs of dots on the

map. The invariance property mentioned implies that with a phase difference of π, i.e. on

stroboscopic sections taken at t = T/2 mod T , the period-two limit cycles are represented

by colored circles which are mirror images of the ones of the other color on the t = 0 modT

sections. Accordingly, the bifurcation diagram taken at t = T/2 mod T would be the mirror
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image of Fig. 1a with respect to the x = 0 axis.
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Figure 1: Time-continuous phase space trajectories of the clockwise (blue) and counter-

clockwise rotating (red) attractors at C=0.5835. Attractors on the stroboscopic map taken

at t = 0 modT are indicated by heavy dots. Colored circles indicate the attractors on sec-

tions taken at t = T/2 mod T .

These invariant properties do not hold, however, with time-dependent amplitudes C(t).

The clockwise and counterclockwise rotating snapshot attractors are then not equivalent,

since the ramp starts at t = 0 (and not at T/2). An invariance property still exists: with

any time-dependent C(t), Eq. (S1) is invariant under the transformation x→ −x, y → −y,
t → t − π (π = T/2) and C(t) → C(t − T/2). Any trajectory starting at x0, y0 with the

scenario C(t) is equivalent to the trajectory starting at−x0,−y0 with the scenario C(t−T/2).

The corresponding snapshot attractors should then be equivalent, too. Since in the bulk of

the paper we do not shift the time in C(t), attractors which are equivalent with constant C

lose this property in the ramped system for t > 0.

SUPPLEMENTARY DISCUSSION II: ADDITIONAL SCENARIOS

In this section we also investigate scenarios differing from those discussed in the main

text. S. Fig. 2 shows the new parameter intervals along the perimeter of the bifurcation

diagram.
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Figure 2: Bifurcation diagram as in Fig. 1a but with the control parameter intervals In,

n = 5, . . . , 9 investigated solely in the supplementary discussions, marked by line segments

along the frame of the bifurcation diagram.

A. Dependence of the basins on tr with control parameter interval I2

In S. Fig. 3 we show the tr-dependent basins for scenarios involving interval I2 considered

in Section 5.

In contrast to Fig. 2, the basins contain very fine filaments, even more pronounced when tr

is increased (corresponding to a less steep ramp). A filamentary, fractal structure is present

everywhere (even for long observation times), and it deforms as tr changes.

We have determined the tipping probabilities from the cyan attractor at C−. Fig. 5a in

Section 5 shows the dependence of these tipping probabilities on tr. The functions presented

indicate that even for relatively large values of tr the tipping probabilities PCy,B, PCy,R are

not yet zero. The expected decay of the tipping probabilities to zero starts only at much

larger values as discussed in Section 5.
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Figure 3: Basins of attraction for scenarios starting at t− = 0 with C− = 0.1 and ending

at t+ = 100 with C+ = 0.5835 (I2 in Fig. 2a). For each scenario, tr is indicated above the

panels. The black circle marks again the location of the cyan attractor at t−.

B. Scenarios starting from a C− with multiple coexisting attractors

As an illustrative example, we choose C− = 0.33 (with three period-one attractors in the

frozen-in system) and C+ = 0.5835 (with three, period-two attractors), interval I5. When

calculating the tipping probabilities in this case, one should take into account in Eq. (3)

that B1(t−) is only a portion of the full phase space, since 3 attractors coexist in the initial

state. To get these portions, first, one has to calculate the relative basins of attraction of A1

at C− and then to compute the tipping probabilities only for initial conditions starting in

B1(t−).
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Figure 4: Scenario-dependent basins and tipping probabilities for C− = 0.33, C+ = 0.5835

(I5), t− = 0, t+ = 100. (a): the basins are shown with tr = 8 on the cyan attractor’s

basin of attraction at C− and t = 0. (b): calculated tipping probabilities from the cyan

attractor as a function of tr. The tipping probabilities from the blue attractor are shown

in the inset.

The scenario-dependent basins restricted to the basin of the cyan attractor at C− are

shown in S. Fig. 4a along with the tipping probabilities given in S. Fig. 4b. We note

that the tipping probabilities disappear by about tr = 50. Tipping probabilities can also be

determined from any of the attractors at C−. The inset shows these from the blue attractor

(the results for the red one are very similar). One sees that a tipping into a different attractor

is here also rather unlikely, and more or less the same for both the red and the blue attractor.

The probabilities drop below 10−3 already when tr = 17. From a practical point of view

such small probabilities are unlikely to be measurable in real systems, therefore we claim

that a rate-induced tipping is found here, but - as in earlier cases - the transition (at about

tr = 17) is not abrupt, but rather gradual and smooth as tr increases.

C. Tipping into small-size chaotic attractors

Next we take a scenario (I6) which ends at a value where chaotic attractors coexist with

the two basic rotating attractors. Even if the chaotic attractors are small, an essential

difference in comparison with previous cases of the Supplementary Discussion is that tipping
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Figure 5: Scenario-dependent basins in a scenario starting with C− = 0.82 and ending

at C+ = 1.045 (I6) where two small 3-piece chaotic attractors coexist with the two basic

overturning limit cycles, starting from the basin of attraction of the red limit cycle, t− =

0, t+ = 100. (a) [(b)]: tr = 0, frozen-in [tr = 5]. The chaotic attractor are encircled with

a black line (c): Tipping probabilities into each of the attractors at C+ as a function of tr.

Tipping probabilities from the chaotic attractors (orange and magenta) decrease with tr

and vanish at about tr = 15.

might occur here into intervals not only into points in the stroboscopic map, or from a

dynamical point of view, into unpredictable complex motion, not only into limit cycles. As

in Section 6, we call this type of tipping tipping into a chaotic attractor. The colors used

here to mark the basins of the chaotic attractors are lighter versions of the colors of the

neighboring periodic attractors. The initial conditions are chosen from the interior of the

basin of the red attractor at C−. In the absence of a ramp, every point shown would fall onto

the red attractor. In the presence of a ramp, other long-term outcomes are also possible.

The message of S. Fig. 5a,b is that the basin structure is more complex than previously.

In S. Fig. 5c the tipping probability from the red limit cycle to the blue limit cycle and to

the blue and red chaotic attractor is computed as a function of tr, along with the tracking

probability of the red periodic attractor. The probability of tipping to the chaotic attractor

is nonzero only for tr smaller than about 15, indicating that tipping into small-size chaotic

attractors is rate-induced within the interval tr = [0, 40].
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D. Comparison of scenarios with identical control parameter increases

We compare four scenarios having approximately the the same increase in the driving

amplitude ∆C ≈ 0.2 started at different values of C−. The scenario C− = 0.62, C+ = 0.82

(I7) is to the left of the interval (I6) investigated in the previous subsection, while scenario

C− = 1.06, C+ = 1.26 (I8), is to the right. In both cases the parameter drifts through

small size chaotic attractors (see Fig. 2a). The last scenario C− = 1.045, C+ = 1.245 (I9)

corresponds to starting on a small scale chaotic attractor and ending on one of the rotating

attractors (a case of tipping from a chaotic attractor, marked by symbols c). The tipping

probabilities summarized in S. Fig. 6 are qualitatively similar, with a few differences. In the

scenario with I6, the tipping probability into the periodic attractors differs for tr < 15 from

the other cases since it is in this range where the probability of tipping into a (small scale)

chaotic attractor is nonzero, see S. Fig. 5c. The tipping probabilities remain finite in all cases

in the full tr range investigated. The slight slopes remaining by tr ≈ 40 suggest a perpetual

decrease of the blue curves. They are estimated to approach zero at a few hundreds of the

period. This corresponds to the adiabatic limit, in which points started in the basin of the

red attractor should remain in its slowly changing basin forever.
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Figure 6: Tipping probabilities computed as a function of tr for four scenarios marked by

different symbols. The red (blue) curves indicate the probability of tipping into the red

(blue) limit cycle at C+ from the basin of attraction of the red limit cycle at C−. (t− = 0,

t+ = 100.) The graphs marked by symbol c represent the tipping probabilities from chaos

into one of the periodic attractors.
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SUPPLEMENTARY DISCUSSION III: BIVARIATE TIPPING PROBABILITIES

As described in the main text, the tipping probabilities might exhibit a complicated

dependence on both the ramping time tr and the starting time t−, for a fixed choice of C−

and C+. Here, these bivariate functions are shown for the three types of transition that exist

in the range I2. For completeness, the second row shows these probabilities color coded on

the plane tr,t−. Red lines mark the slices shown in Fig. 5.
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Figure 7: Tipping probabilities measured in scenarios with C− = −0.1 and C+ = 0.5835

(I2). Here PCy,B, PCy,R and PCy,Cy are displayed in the three columns as bivariate func-

tions of tr and t−. The probability is represented as a variable along the vertical axis in

the first row, and as a projection, color coded, in the second row.

SUPPLEMENTARY DISCUSSION IV: SNAPSHOT ATTRACTORS AND THEIR

ROLE IN TIPPING PHENOMENA

In order to discuss the role of snapshot attractors in the tipping transitions, we consider

two scenarios, summarized schematically in S. Fig. 8. These differ only in their initial time
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Figure 8: Schematic diagram of scenarios A: (C−, t−, C+, t+, r), red line, and B: (C ′−, t
′
− =

t′, C+, t+, r), blue dashed line, with the same ramp r, (see Eq. (1) ), whose basins of at-

traction are compared in S. Fig. 9, and during which snapshot attractors are presented in

S. Fig. 10.

(or initial parameter values C− and C ′−) while having the same ramp and identical futures.

The earlier initialization time shall be taken as t− = −4 on the initial plateau, and the later

initialization time is on the ramp at t′ = 2. The general parameters of these scenarios are:

• A: (C−, t−, C+, t+, r),

• B: (C ′−, t
′
− = t′, C+, t+, r).

The initial control parameter C− is taken to be 0.1 with the cyan attractor and C ′− is chosen

(for convenience) to be such that the cyan attractor is also the only stable one at this

larger value. The endpoint is selected to belong to three coexisting periodic attractors, with

C+ = 0.5835, which has been taken in the main text, too (see e.g. Fig. 6). The novelty of

this choice is the ability to compare scenarios which start on the initial plateau and on the

ramp, but are otherwise the same.

The scenario-dependent basins of attraction (A and B) are remarkably different, as illus-

trated by S. Fig. 9a-b. We have also determined the tipping probabilities PCy,R and PCy,B

which are the only relevant ones in both scenarios, and the results are summarized in S.

Table I. The difference can be understood intuitively by looking at the patterns of S. Fig.

9. The total area of the basins, colored red and blue are approximately identical, and cyan
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dominates them in (a) (PCy,Cy = 0.558), while red and blue are somewhat more prominent

than cyan in (b) (PCy,Cy = 0.264).
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Figure 9: Scenario-dependent basins of attraction for scenario A (a), and for scenario B

(b).

PCy,R PCy,B

Scenario A 0.237 0.205

Scenario B 0.355 0.381

Table I: Tipping probabilities PCy,R and PCy,B computed for scenarios A and B. The track-

ing probability is PCy,Cy = 1− PCy,R − PCy,B.

The explanation of the differences of the two panels of S. Fig. 9 (and the two rows of S.

Table I) lies in the difference between the initial condition for the continuation of scenario

A, at the instant t′ = 2 when the value C ′− = C− + rt′ = 0.1967 is reached along the ramp,

and the uniform initial distribution applied as an initial condition to scenario B at the same

time instant. To this end, we make use of the property that the ramped system is memory

free (see Eq. (S1)). As a consequence, any instantaneous state of the ensemble provides the

initial condition for its future. The initial condition for the continuation of scenario A at t′ is

nothing but the distribution evolved from the uniform initial distribution over the full state

space applied at time t− = −4. Since the convergence time to a snapshot attractor is about

3 time units in this system as shown in [12], and t′+ |t−| is beyond this value, we can consider
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this initial condition at t′ to be the snapshot attractor along with its natural distribution

belonging to this time instant in scenario A (started at t− = −4). This snapshot attractor

is shown in S. Fig. 10a. The initial condition for scenario B starting at t′− = t′ and C ′− is

the full phase space, it is thus the difference between a uniformly filled out rectangle and a

much "smaller" filamentary pattern with a nontrivial distribution, the snapshot attractor of

S. Fig. 10a, which is the cause of the differences in the tipping transitions.
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Figure 10: Snapshot attractors with their distributions belonging to the black dots in S.

Fig. 8 along scenario A with a rate r = 0.04835, C− = 0.1, C+ = 0.5835, t− = −4, t+ =

100. (a): snapshot attractor evolved from the uniform initial condition taken at t− = −4

by time t′ = 2, (b): by time t′′ = 10. (c): snapshot attractor taken at t+ = 100 which

exhibits 3 pairs of peaks designating the 3 period-2 attractors on the C+ plateau. Note

that the highest pairs of peaks belongs to the cyan attractor (see S. Table I).

For completeness, in S. Fig. 10b we show the snapshot attractor evolved in scenario A by

time t′′ = 10 when the plateau of C+ = C− + rt′′ is reached. This can also be considered as

the image of the object visible in S. Fig. 10a with respect to the ramped dynamics.

In addition, it is to be noted that the shape and distribution of the snapshot attractor at

t′ and t′′ is independent of the future of the scenario. They are e.g. the same in any scenario,

which is identical to A up to t′′ and only differing in their end values and plateaus.

The similarity of these snapshot attractors and their distribution to usual chaotic attrac-

tors and their natural distribution (see e.g. the cover plate of [35]) might be surprising.
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The explanation of this similarity lies in the fact that transient chaos is ubiquitous for any

frozen-in case for C > Cb = 0.2, and it is the filamentary, fractal unstable manifold of the

chaotic saddles that determines the shape of the snapshot attractors in the ramped system,

as pointed out in [12, 13].

The snapshot attractor into which the object shown in S. Fig. 10b evolves by time t+

along the scenario A, is shown in S. Fig. 10c. Its particular form is due to the fact that

the system left the ramp by t′′ and has been evolving according to the frozen-in dynamics

with C+ on the plateau since then. The six sharp peaks correspond to the three period-2

limit cycles representing the asymptotic attractors of the frozen-in system. In this view, the

tipping probabilities, in scenario A, from the cyan attractor at C− = 0.1 into any of the limit

cycles appear to be proportional to the strength of the corresponding pairs of peaks of the

snapshot attractor at t+.

In summary, the difference in the tipping probabilities of scenarios A and B is caused

by the difference of the distributions at C ′−, t′, which is a uniform one in scenario B. This

difference is reflected in the different heights of the peaks on the periodic attractors belonging

to the final time t+. Consequently, the periodic attractors belonging to scenario B at C+, t+

consists of 3 pairs of peaks but of strengths differing from those of S. Fig. 10c, in harmony

with the difference of the tipping probabilities. In particular, as the second row of S. Table

I and S. Fig. 9b suggests all 3 pairs should be of similar height in this case.
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