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Abstract

We investigate the effects of spatial heterogeneity on the coexistence of competing species in the case when the heterogeneity is

dynamically generated by environmental flows with chaotic mixing properties. We show that one effect of chaotic advection on the

passively advected species (such as phytoplankton, or self-replicating macro-molecules) is the possibility of coexistence of more

species than that limited by the number of niches they occupy. We derive a novel set of dynamical equations for competing

populations.

r 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

One of the classical problems of ecology is the
identification of the mechanisms responsible for the
coexistence of competing species. It is an observational
fact that in Nature numerous species are able to coexist,
all competing for a limited number of resources. This
observed coexistence is at odds with the classical
theories and empirical studies predicting competitive
exclusion of all but the most perfectly adapted species
for each limiting factor (Gause and Witt, 1935; Hardin,
1960). However, one of the key ingredients in these
classical studies was the assumption of a homogeneous,
well mixed and non-structured environment which leads
to an equilibrium state in the system. Thus, if
coexistence is to persist over longer time periods, it
must have some spatial or temporal structure. The
mechanisms responsible for this non-equilibrium
nature of the coexistence are rooted in the variability

of the niches.
The coexistence problem is best illustrated in the case

of phytoplankton communities as was originally pre-

sented by Hutchinson (1961). Here a number of species
coexist in a relatively isotropic or unstructured environ-
ment, all competing for the same sorts of materials, and
the number of species exceeds considerably the number
of limiting factors. To solve this the so-called ‘‘paradox
of plankton’’, Hutchinson put forward the idea that
seasonal environmental changes prevent competitive
exclusion in natural phytoplankton communities. Thus
the species of the community, at least on the time
scale of ecological observation, are in non-equilibrium
coexistence.

Since then numerous investigations revealed many
different mechanisms, including spatial and temporal
heterogeneity of habitat, predation, disturbance, co-
evolution, etc. (Wilson, 1990; Chesson, 2000), increasing
the probability of competitive coexistence. Naturally,
under the word ‘‘competition’’ many different biological
phenomena are collected together, which influence the
coexistence of species in different ways.

Thus the original problem changed into finding the
most relevant mechanisms which maintain diversity in
particular situations (Connell, 1978; Huston, 1979;
Wilson, 1990; Tilman and Pacala, 1993; Bartha et al.,
1997). Despite the vivid debate in this field of ecology,
there is by now a consensus that climatic periodicities
and fluctuations play the main role in causing species’
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persistence in phytoplankton communities (Gaedeke
and Sommer, 1986; Reynolds, 1993; Sommer et al.,
1993). It is frequently argued that an intermediate
disturbance (Connell, 1978) is the most adequate
hypothesis for the explanation of high diversity in
phytoplankton communities (cf. Reynolds, 1998).

One can meet a similar problem in early evolution of

life. Since life evolves from the simple structured entities
to the most complex ones, there must have been a stage
in the evolution, when life was essentially no more
complex than what a collection of self-replicating
nucleic acids present (Maynard Smith and Szathm!ary,
1995). They were competing for a few limiting resources
(such as mononucleids and energy rich chemicals) and
making copies of themselves without any specific
enzyme. Without enzymes the copying accuracy could
not be very high. Estimating the selective superiority of
the best replicator and the copying accuracy per
nucleotide, it is concluded that the maximum length of
these molecules is about 100 nucleotides (Eigen, 1971).
However, if the prebiotic ocean was (as the models
assumed directly or indirectly) on long time scales well
mixed, there would have been only a few winners of the
selection, namely the most fit macro-molecule surrounded
by its closest mutants (Eigen, 1971; Eigen and Schuster,
1979). But how can we surmount the gap between these
primitive replicators with 100 nucleotides and the most
simple RNA viruses with 4000–5000 nucleotides? Specific
replicase enzymes are needed to increase the copying
fidelity, and thus the length of the replicator, but these
replicators are too short to code specific enzymes. This is
the ‘‘Catch 22’’ of the prebiotic evolution (Maynard
Smith, 1983): no genome without an enzyme, however no
enzyme without genomes. This problem can be resolved if
some mechanism maintains the coexistence of several
different replicator molecules, and therefore the informa-
tion necessary for coding a replicase enzyme can be stored
by the union of smaller information carriers. In this
situation the replication error does not grow exponen-
tially as in the case of a base-by-base copying, it grows
only linearly with the number of smaller carriers.

Current theories point out coexistence of replicators
moving on a surface (Boerlijst and Hogeweg, 1991;
Cz!ar!an and Szathm!ary, 2000), preferring thus the
concept of ‘‘prebiotic pizza’’ against the concept of
‘‘prebiotic soup’’ (W.achtersh.auser, 1994). In these
models, however, some replicator molecules either
catalyze each others replication directly (Boerlijst and
Hogeweg, 1991), or indirectly operate on a common
metabolism (Cz!ar!an and Szathm!ary, 2000; K!arolyi et al.,
2002), consequently they are not completely competi-
tive. An alternative explanation assumes that both the
replicative and enzymatic functions were co-evolved,
thus the length of the replicators and the accuracy of
enzymatic functions increased together (Poole et al.,
1999; Scheuring, 2000; Szab !o et al., 2002).

In both problems (i.e., in the paradox of plankton and
in the Catch 22 of prebiotic evolution) the traditional
population dynamical equations for two species B1; B2

competing for the resource A read as

dN1

dt
¼ a1N1 � d1N1; ð1Þ

dN2

dt
¼ a2N2 � d2N2: ð2Þ

Here Ni is the instantaneous number of individuals of
species Bi in a given range of a well-stirred region. The
instantaneous parameters ai; di are positive and de-
pend, in general, on the concentration of the resource
material A; too.

Independently of the particular form of this depen-
dence and the dynamical equation of A; no fixed points
can exist in the system in which both species would be in
a steady state with non-zero values of Ni ¼ Nn

i (Gurney
and Nisbet, 1998). The coexistence might, however, be
possible in imperfectly stirred environments. As numer-
ous remote sensing images demonstrate phytoplankton
are distributed along fractal filaments in the oceans
indicating a strong but imperfect mixing environment
(Fig. 1).

Recent development in the field of hydrodynamics
encouraged us to revisit the population dynamics of
competing species in open aquatic systems. In aquatic

Fig. 1. SEAWIFS image of a phytoplankton bloom at Shetland

Islands, May 12, 2000, from the NASA archive. Plankton individuals

(light gray) move along a fractal-like set.
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systems of large extension, on the time scales character-
istic to the life cycle of microorganisms and replicators,
the hydrodynamical flows are locally open, i.e., there is a
net current, transporting both competitors and nutri-
ents, flowing through the typical observation region. It
is even more obvious that the flow is open in the wake of
islands surrounded by strong ocean currents (Arı́stegui
et al., 1997) and around the deep see hot springs where
the cradle of life probably swung (Holm, 1992).

With the aid of numerical simulations we have
previously shown that the coexistence of passively
advected competing species is typical in open chaotic
flows (K!arolyi et al., 2000; Scheuring et al., 2000). For
simplicity, we have considered the two-dimensional flow
around a cylindrical obstacle placed into a uniform
background flow. For moderate inflow velocities there is
a periodic detachment of vortices in the wake of the
obstacle with period T ; which forms the von K!arm!an
vortex street (Shariff et al., 1991; Jung and Ziemniak,
1992; Sommerer et al., 1996). The flow in the wake is
time dependent but still spatially regular. Here indivi-
duals of two passively advected species compete for a
common limiting resource, see Fig. 2. We argued that
coexistence is due to the fractal structures typically
appearing in the advection patterns of such flows,
however, we have given only a heuristic interpretation
for the mechanisms maintaining coexistence in this
hydrodynamical system. In this article we present a
mathematical deduction to explain coexistence of
competitors in open chaotic flows. The mathematical
problem is to investigate two coupled population
dynamical processes evolving on a fractal support. We
shall present a new class of equations which describe this
situation and allow for the coexistence of at least two
species competing for the same resource. A novel feature
of these equations will be a singularly non-linear
(power-law) form of both the replication term and the
coupling between the populations.

In the following section we summarize the qualitative
features of the relevant physical process, followed by a
study of the dynamics of a single population in an open
chaotic flow. Consequently, the coexistence of compe-
titors is discussed by first giving a qualitative argument
based on the single population picture, followed by a
detailed mathematical model leading to the aforemen-
tioned new type of population dynamical equations.
Next, this theory is compared with further numerical
results carried out on a simple map modeling the
advection dynamics, on the so-called baker map. We
conclude with a summary and outlook.

2. Passive advection in open flows

Chaotic advection in open hydrodynamical flows is an
ubiquitous phenomenon. A flow is considered locally

Fig. 2. The distribution of two populations (light gray ðBÞ and dark

gray ðCÞ) competing for the same resource material (white ðAÞ) in the

wake of a cylinder. The flow is from left to right. (a) Time dependence

of the population numbers nB; nC and clearly indicates the approach to

a steady state of coexistence after about 40 time units which is the

period of the flow. A blowup of the region indicated by a rectangle in

(b) is seen in (c). Species distribution is strikingly similar to many of the

patterns found on the NASA SEAWIFS satellite pictures of plankton

blooms (see Fig. 1). After K!arolyi et al. (2000).
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open if there is a net current flowing through the
observation region (Lamb, 1932). It became clear in the
last decade that passive advection even in simple time-
dependent flows is typically chaotic (P!entek et al., 1996;
Sommerer et al., 1996; K!arolyi and T!el, 1997) and
possesses complicated particle trajectories. These flows,
characterized by strong imperfect mixing, lead to a
fractal spatial distribution of advected particles in a
finite region of the flow. This region is called the mixing

region. In our terminology, a flow is chaotic if the
advection dynamics generated by the flow is chaotic.

In the case of several (three or more) types of
passively advected tracers, distinguished for example
by their color, it was shown (Toroczkai et al., 1997, and
references therein) that their distribution may follow a
rather non-trivial topology on the fractal, a property
called the Wada property: every point on the fractal is
lying on the boundary of at least three colors. There is,
however, poor mixing elsewhere.

It is worth emphasizing that a complicated flow field
(turbulence) inside the mixing region is not required for
the flow to be chaotic (i.e., for complex advection
dynamics or for the appearance of fractal patterns).
Even simple forms of time dependence, e.g., a periodic
repetition of the velocity field with some period T ; is
sufficient (Aref, 1994). Thus, for sake of simplicity, we
examine advection in time-periodic open flows.

The complicated form of trajectories implies a long
time spent in the mixing region. In other words,
advected particles can be temporarily trapped there. It
is even more surprising, however, that there is an infinity

of special non-escaping orbits. The simplest among these
orbits are the periodic ones with periods that are integer
multiples of the flow’s period T : All the non-escaping
orbits are highly unstable, of saddle type, and possess a
strictly positive local Lyapunov exponent (which is the
expanding eigenvalue of the unstable periodic orbit).
Another important feature of these orbits is that despite
their infinite number they are rather exceptional so that
they cannot fill a finite portion of the phase space.
Indeed, the union of all non-escaping orbits forms a
fractal ‘‘cloud’’ of points on any snapshot. This fractal
cloud moves periodically with the flow and never leaves
the mixing region.

Typical advected particle trajectories are not in the set
of the non-escaping orbits, but are, nevertheless,
influenced by them. They follow closely some periodic
orbit for a while and later turn to follow others. This
wandering amongst periodic (or, more generally, non-
escaping) orbits results in the chaotic motion of
passively advected particles. Indeed, as long as the
particles are in the mixing region, their trajectories
possess a positive average Lyapunov exponent l:
Hence the union of all non-escaping orbits is called
the chaotic saddle. The flows relevant from our point of
view can be considered to be incompressible. This results

in a time-reversal invariant, area preserving particle
dynamics. Therefore, the negative average Lyapunov
exponent is exactly �l; and it characterizes the
compression towards the chaotic saddle.

While many of the particles spend a long time in the
mixing region, the overwhelming majority of them
leaves this region sooner or later. The decay of their
number in a fixed frame is typically exponential with a
positive exponent kðolÞ; which is independent of the
frame, i.e., NðtÞ ¼ Nð0Þ expð�ktÞ: This quantity k is the
escape rate from the saddle (or from the mixing region).
The reciprocal of the escape rate can be considered as
the average lifetime of chaos, and therefore the chaotic
advection of passive particles in open flows is a kind of
transient chaos (T!el, 1990).

The chaotic saddle is the set of non-escaping orbits
which advected particles may follow for an arbitrarily
long time. Each orbit of the set, and therefore the set as
a whole, has an inflow and an outflow curve, also called
in the mathematical jargon of chaos theory the stable
and unstable manifolds, respectively. The inflow curve is
a set of points along which the saddle can be reached
after an infinitely long time. The outflow curve is the
set along which particles lying infinitesimally close to the
saddle will eventually leave it in the course of time. By
looking at different snapshots of these curves we can
observe that they move periodically with the period T of
the flow. Their fractal dimension D0 ð1oD0o2 in two-
dimensional flows) is, however, independent of the
snapshot. (The inflow and outflow curves have identical
fractal dimension due to the advection dynamics’ time
reversal invariance.)

There is a unique relation between the fractal
geometry and the advection dynamics, expressed by
the relation (Kantz and Grassberger, 1985; Hsu et al.,
1988; T!el, 1990):

D0 ¼ 2� k
l
: ð3Þ

(By characterizing the dynamics by one single dimension
D0; we have assumed that the advection process has a
monofractal geometry. In reality, a set of dimensions Dq

is required for the full description of the fractal aspects.
It is for the q ¼ 1 dimension, the so-called information
dimension, D1; for which (3) is an exact equality. In
practice, however, the relative difference between D0

and D1 is on the order of a few percents and therefore
the use of a single dimension is justified for practical
purposes.) Eq. (3) says that the deviation of the
dimension from that of the plane is given by the ratio
of two quantities characterizing the global and the local
instability of the dynamics. Relation (3) shows that out
of the three basic characteristics (k; l and D0) only two
are independent. When speaking about population
numbers in what follows, we shall use the escape rate
and the fractal dimension as independent parameters. In
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the local dynamics (see Section 3), however, only the
average Lyapunov exponent appears.

The outflow curve plays a special role since it is the
only set which can be directly observed in an experi-
ment. Let us consider a droplet (ensemble) of a large
number of particles which initially overlaps with the
inflow curve. As the droplet is advected into the mixing
region its shape is strongly deformed, but the ensemble
comes closer and closer to the chaotic saddle as time
goes on. Since, however, only a small portion of
particles can fall very close to the inflow curve, the
majority does not reach the saddle and starts flowing
away from it along its outflow curve. Therefore, in open
flows droplets of particles trace out the outflow curve of
the chaotic saddle after a sufficiently long time of
observation (in fact, the populations in Fig. 2 are
distributed along the outflow curve of the chaotic saddle
present in the wake).

3. Dynamics of a single population

In this section, the mathematical derivation of the
dynamics of a single population living in an open
chaotic flow is briefly repeated (for more details see
Toroczkai et al., 1998; K!arolyi et al., 1999; T!el et al.,
2000). Replication, competition for the limiting re-
sources, and spontaneous decay are taken into account
in our population model, while stage and age structure is
neglected for simplicity. We derive discrete- and
continuous-time models as well.

First, we assume that the intake of resource, multi-
plication and decomposition are instantaneous and take
place at integer multiples of a time lag t: Here t acts as
an average time scale on which the reproduction takes
place.

The basic observation is that after a sufficiently long
time the filaments of the outflow curve are covered in
narrow stripes by individuals of species B due to their
replication (Toroczkai et al., 1998; K!arolyi et al., 1999).

Individuals are thus distributed on a fattened-up fractal
set. On linear scales larger than an average width en the
distribution of B is a fractal of the same dimension D0 as
the outflow curve of the chaotic saddle. Let eðnÞ denote
the average width of these stripes right before replication
and decay due to death takes place. It is worth
measuring this width in the unit of a characteristic
length scale of the flow (e.g., in the cylinder radius in the
example of Fig. 2). Thus, eðnÞ is a dimensionless variable.
Since material A is available outside of these stripes,
replication increases the width with some constant
distance g; the replication range, while spontaneous
decay due to death of individuals decreases it with a
distance m: Naturally, individuals die everywhere within
the filaments, but there is no resource for reproduction
within them. However, the strong contraction towards
the outflow curve rapidly fills in the ‘‘holes’’ appearing
after death of individuals. The net effect of the
replication and spontaneous decay can then be modeled
by a broadening of the width by an amount propor-
tional to the difference s ¼ g� m; the effective replica-
tion range. Thus, eðnÞ-eðnÞ þ cs: Here c is a
dimensionless number expressing geometrical effects. If
the fattened-up filaments do not overlap, then replica-
tion occur on both sides of the stripes leading to c ¼ 2
(see Fig. 3(a)–(c)). If there is overlapping of some of the
fattened-up filaments, like in case of a fractal, then ca2:
This geometrical factor turns out to be slightly time
dependent due to the pulsation of the flow, but for
simplicity it can be considered to be constant from the
point of view of the qualitative behavior of the
population (Toroczkai et al., 2001).

In the next period of length t there is no replication
and decomposition, just contraction towards the out-
flow curve. The average contraction factor is expð�ltÞ;
where ð�lÞ is the negative average Lyapunov exponent of
the advection dynamics (Fig. 3(d)). Therefore, the width
eðnþ1Þ right before the next replication can be given as

eðnþ1Þ ¼ ðeðnÞ þ csÞe�lt: ð4Þ

Fig. 3. Schematic diagram of the individuals’ distribution along the (a) line segment of the outflow curve; (b) the average width of stripes is eðnÞ; (c)
the net effect of replications and decays increases the width with 2s; (d) then the hydrodynamica by a factor of contraction perpendicular to the line

segment decreases the width e�lt:
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This is a recursive map for the actual width of the B-
stripes on snapshots taken with multiples of the time lag
t: The solution of (4) converges for n-N to the fixed
point

en ¼ cs
elt � 1

: ð5Þ

In the time-continuous limit t-0; s-0; but keeping
s=t � vr constant, one obtains the differential equation

de
dt

¼ cvr � le; ð6Þ

which has a steady-state solution given by

en ¼ cvr

l
: ð7Þ

Here vr can be interpreted as the net speed of replication.
Knowing the e-dynamics and that the individuals

accumulate on a fractal set in the mixing region, the time
evolution of the number N of B individuals in that
region can be calculated. First, note that the area A
occupied by species B scales as AEE2�D0 ; with D0 as the
fractal dimension of the outflow curve, for any box size e
not smaller than the width e of the B-stripes. We can
thus choose

E ¼ eEA1=ð2�D0Þ: ð8Þ
(In general, (8) also contains a proportionality constant,
called the Hausdorff volume. Since this only rescales the
constant q (see below), for clarity, we took the
Hausdorff volume to be unity.)

If the linear size of the area occupied by a single
individual is e0; we have N ¼ E�2

0 A; and therefore we
can rewrite (4) or (6) so that it represents an equation for
the individuals in discrete and continuous cases,
respectively:

Nðnþ1Þ ¼ e�ktf½NðnÞ	1=ð2�D0Þ þ qsgð2�D0Þ ð9Þ
and

dN

dt
¼ �kN þ qð2� D0ÞvrN

�b; ð10Þ

with

q ¼ ce�2=ð2�D0Þ
0 : ð11Þ

Here (3) has been used, and

b � D0 � 1

2� D0
ð12Þ

appears as a non-trivial exponent. (For multifractal
flows one can show (T!el et al., 2000) that exponent b is
that given by (12) with D0 replaced by the information
dimension D1:) Since the fractal dimension of the
outflow curve lies between 1 and 2, exponent b is
positive. For D0 ¼ 1 the differential equation (10) is the
analog of a classical surface reaction along a line with
front velocity vr in the presence of escape. For 1oD0o2
it represents a novel form of dynamical equations
containing a fractality-enhanced biological activity term

with a negative power of the individual number of B:
The less B individuals are present, the more effective the
reproduction is, because the resolved perimeter is larger.
Consequently, in a competitive situation the subordinate
species has an advantage if it becomes rare compared to
the dominant species. This balancing mechanism can
make coexistence possible, as shown in the next sections.
The dimension D0 can approach 2 if the flow becomes
closed, when the outflow curves become space filling.
This happens for vanishing escape rate k-0; see (3). In
this limit, therefore, both terms of the right-hand side of
(10) go to zero, corresponding to a space-filling steady
state.

As one can see from Eqs. (9) and (10), in both the
discrete and continuum pictures a steady state is reached
after a sufficiently long time if the geometrical factor c

(and therefore also q) is constant (Toroczkai et al.,
2001). In this case, the steady-state number of indivi-
duals in the mixing region is Nn ¼ E�2

0 ðenÞ2�D0 where en

is given by (5) and (7) for the discrete and continuum
cases, respectively.

4. A model of competition

As in the single-species case, we consider a simple
model of replication and competition with passively
advected point like individuals of type B1 and B2;
multiplying themselves instantaneously. The resource
material A which the different species B1 and B2

compete for is uniformly distributed on the surface of
the flow. Therefore, two auto-catalytic processes A þ
B1-2B1; B1-A and A þ B2-2B2; B2-A represent
the replication and competition process in our model in
an imperfectly mixed environment. Similar to the single-
species case, the parameters gi and mi ði ¼ 1; 2Þ are
defined as the increase and decrease of the Bi stripe
width due to replication and death, respectively, so that
the effective replication distances are si ¼ gi � mi:

As before, an important feature of the advection
dynamics is its deterministic nature. Concerning the
population dynamics, this implies that we work in the
limit of weak diffusion and assume that the mutual
diffusion coefficients between any pair of the constitu-
ents is small.

Prior to discussing the consequences of the imperfect
mixing generated by the chaotic flow to this dynamics, it
is worth briefly giving the traditional equations govern-
ing the above defined auto-catalytic processes in a well-
mixed environment. In a fixed region of observation
they are

dN1

dt
¼ g1AN1 � m1N1; ð13Þ

dN2

dt
¼ g2AN2 � m2N2; ð14Þ

I. Scheuring et al. / Theoretical Population Biology 63 (2003) 77–9082



where Ni denotes the number of individuals of species
Bi; and A is the instantaneous amount of the resource
material in the same region. Note that the meaning of
the replication and death rates are slightly different here
from those in the discrete model (thus e.g., mi in
Eqs. (13) and (14) is of dimension frequency, while the
same quantity in the discrete version is a distance). If the
dynamics of resource is much faster than the dynamics
of competing species, then the former can be considered
to be in a quasi-stationary state: dA=dt ¼ 0: The
equation for resource A is then

dA

dt
¼ 0 ¼ l � g1AN1 � g2AN2; ð15Þ

and l is the constant inflow of resource A into the region
of observation. Eqs. (13) and (14) correspond to the
general scheme (1) and (2) given in the Introduction by
identifying mi with di and giA (where A is given by the
right-hand side of (15)) with ai:

After analyzing (14) and (15), one can easily see that
species with lower ratio gi=mi of replication and death
rates would be outcompeted, and thus stable coexistence
is impossible. However, the above equations are not
valid in an imperfectly mixed media like an open chaotic
flow is.

5. A mathematical model for the competition dynamics

After sufficiently long time, both species B1 and B2

will be distributed in narrow stripes along the chaotic
saddle’s outflow curve as follows from the passive
advection dynamics. Due to the replication and decom-
position, however, the stripes have finite widths (cf.
Fig. 2) which might depend on time. Let en denote the
dimensionless average width of the stripes right before
an instantaneous replication takes place. These stripes
are defined by the fact that outside of them there is only
background material A available. Inside the stripe of
width eðnÞ there might be several narrow B1 or B2

filaments. The background material A is eaten up
sooner or later in the inside of any stripe, therefore,
for the sake of an easier presentation, we assume that
this is the case and only material B1 and B2 are
present. Let us denote the total widths of all the
filaments of a given material within an eðnÞ stripe by eðnÞi

with i ¼ 1; 2 corresponding to B1 and B2; respectively.
The sum of these partial widths is of course the total
one eðnÞ1 þ eðnÞ2 ¼ eðnÞ: Our aim is to build up the dynamics
of the partial widths based on plausible assumptions,
from which the dynamics of the different populations
follows.

We assume, that the boundaries are occupied by
species B1 or B2 with probabilities p1 and p2; respec-
tively. In other words, a stripe-boundary picked at
random from the many filaments of the outflow curve

will have a probability pi to be of type Bi; i ¼ 1; 2: If
mixing of the two species were perfect along the fractal
set, these probabilities would be equal to their relative
number. This is not the case, however. The relative
position of the species in the initial distribution to the
inflow curve determines which individual or patch of
individuals will be trapped by which orbit of the
chaotic saddle. The rest, i.e., the untrapped individuals
will drift out of the mixing region. The trapped
individuals, however, will stay there forever, and follow
their specific trapped orbit. In the course of time,
individuals give birth to others of the same species, and
patches of individuals are stretched along the outflow
curve specific to the trapping orbit of the chaotic saddle.
In either cases, we end up with long stripes of the two
species lined up along each other in an alternating
manner, tracing out the outflow curve. Then the
probability of one species to be on the edge of these
lines, and thus to be capable of reproduction, depends
on (1) which trapping orbit produces the filament of
outflow curve belonging on the edge of the stripe, (2) on
the order in which the species are lined up across one
stripe, and (3) on the actual width of the coverage of the
filaments. In other words, it is the complex chaotic
dynamics which makes the introduction of probabilistic
concepts—on a somewhat phenomenological level—
unavoidable.

The probabilities pi depend on what the distribution
of the species inside the stripes is. Thus, the simplest
possible assumption is that the probabilities depend on
the partial widths eðnÞi : Their actual functional form
might also contain parameters of the flow and of the
biological activity.

Naturally, the probabilities fulfill 0pp
ðnÞ
1 p1 and

p
ðnÞ
2 ¼ 1� p

ðnÞ
1 : They might have a general dependence

on the partial widths eðnÞi ; i ¼ 1; 2: But due to dimen-
sional reasons they can only depend on the ratio zðnÞ �
eðnÞ1 =eðnÞ2 ; and p

ðnÞ
i ¼ p

ðnÞ
i zðnÞ
� �

: Thus we write

p
ðnÞ
1 ¼ gðzðnÞ;oÞ; p

ðnÞ
2 ¼ 1� gðzðnÞ;oÞ: ð16Þ

Here o40 is a parameter of the distributions,
and incorporates the dependence on the replication
rates. We also made the plausible assumption, that g

has no explicit n (or time) dependence. A general
property of g is that it vanishes in the origin gð0;oÞ ¼ 0
since this expresses the obvious fact that if species
B1 is missing, then the probability to find it in the
filaments is zero. Similarly, for infinitely large values of z

it must be unity: gðN;oÞ ¼ 1 which corresponds to the
absence of B2: Also, due to the fact that p1 and p2 are
probabilities, we must have 0pgðz;oÞp1 for all zX0:
Furthermore, the functional form must be symmetric by
interchanging the role of the species. This implies
that one must have g0ð0;oÞX0; where the prime
denotes differentiation with respect to the argument.
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This implies

p
ðnÞ
2 ¼ gð1=zðnÞ; 1=oÞ; ð17Þ

where the appearance of 1=o means that an interchange
of the species index brings the parameter in its reciprocal
value, as e.g., in the case when o ¼ s1=s2 (the
dependence on the ratio of the replication distances
follows from dimensional reasons). The normalization
of the probability implies

gðz;oÞ þ gð1=z; 1=oÞ ¼ 1: ð18Þ

This is a functional equation for g: With the above
properties and boundary conditions we find that a
family of solutions is given by the form

gðzÞ ¼ za

za þ o
; ð19Þ

with a and o as two positive parameters. In the range of
0oao1 the smaller population is less probable on the
boundary but yet with a weight which is weaker than the
linear one in width. For a ¼ 0 there is no width
dependence at all, the probabilities pi are constant.
The case a ¼ 1 and o ¼ 1 corresponds to a homo-
geneous mixing within the stripe of width e: For a41 a
superdominance is described. In the next section we
show that form (19) of gðzÞ is indeed in good agreement
with numerical simulations, and determine possible
values for parameters a and o:

The broadening of the average widths is then cs1p
ðnÞ
1

and cs2p
ðnÞ
2 due to species B1 and B2; respectively. Here

the geometrical factor c and parameter si ¼ gi � mi have
the same meanings as in the single-species problem
defined previously.

Thus, similar to (4) the partial width of Bi after the
ðn þ 1Þth step is

eðnþ1Þ
i ¼ ½eðnÞi þ csip

ðnÞ
i 	e�lt ð20Þ

for i ¼ 1; 2:Note that in our theory, cp1 and cp2 can also
be interpreted as renormalized geometric factors for
each species, due to the screening effects at the
boundaries of the stripes. As a consequence, the total
width of the stripes changes at a replication as

eðnþ1Þ ¼ ½eðnÞ þ cðs1pðnÞ
1 þ s2p

ðnÞ
2 Þ	e�lt: ð21Þ

For simplicity, the explicit width dependence (16) of the
probabilities has not been written out. For s1 ¼ s2 we
recover the width dynamics of the single-species
problem, see (4).

Next we turn to the dynamics of the number of
individuals. On scales larger than or equal to eðnÞ; the
total number of individuals N ¼ N1 þ N2 occupied by
stripes appears to be a fractal of the same dimension D0

as the outflow curve. For simplicity of writing, we
assume that individuals of both species have the same
size e0 (an extension for different sizes is straightfor-
ward).

Since the relation between the eðnÞ and the area or
the number of individuals NðnÞ is the same as in the
single-species model, we can use (8). Thus (21) implies
a recursion for the total number right before repli-
cation as

Nðnþ1Þ ¼ e�ktf½NðnÞ	1=ð2�D0Þ þ q½s1pðnÞ
1 þ s2p

ðnÞ
2 	g2�D0 ;

ð22Þ

with q given by (11).
Next, we derive the dynamics of the number of

individuals N
ðnÞ
i for species i contained in the stripes.

The number of individuals of species i is the portion
of the total number NðnÞ proportional to the partial
widths

N
ðnÞ
i ¼ NðnÞe

ðnÞ
i

eðnÞ
: ð23Þ

This is due to the fact that there is no fractal scaling
below eðnÞ: Since EðnÞ ¼ ½e20NðnÞ	1=ð2�D0Þ; Eq. (23) leads to

eðnÞi ¼ N
ðnÞ
i E2=ð2�D0Þ

0 ½NðnÞ	b: ð24Þ

As another consequence of (23), the ratio of the partial
widths is the ratio of the population numbers:

zðnÞ � eðnÞ1

eðnÞ2

¼ N
ðnÞ
1

N
ðnÞ
2

: ð25Þ

From Eqs. (20) and (24) we therefore obtain the
dynamics of the population numbers as

N
ðnþ1Þ
i ½Nðnþ1Þ	b ¼ e�ltfN

ðnÞ
i ½NðnÞ	b þ qsip

ðnÞ
i ðNðnÞ

1 =N
ðnÞ
2 Þg
ð26Þ

for i ¼ 1; 2: Here exponent b is the same expression (12)
as in the case of the single-species problem, and q is
given by (11).

The time continuous limit is obtained by letting both
the time lag and the effective replication ranges go to
zero so that their ratios remain finite. Thus we define
replication velocities

vi ¼ lim
t-0

si

t
; ð27Þ

with i ¼ 1; 2 for species B1;B2; respectively. In the
continuous time limit, the differential equations ob-
tained for the partial widths from (20) read as

dei

dt
¼ �lei þ cvipiðe1=e2Þ; ð28Þ

where p1 ¼ g; p2 ¼ 1� g:
The differential equation for the number of all

individuals follows from (22) as

dN

dt
¼ �kN þ qð2� D0ÞvN�b: ð29Þ

Here

v � p1v1 þ p2v2 ð30Þ
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is an average velocity, but note that it is not a constant
since the pi depend on the population numbers.

The differential equation for the number Ni of
individuals of the two species can be derived from (28)
and the continuum version of (24), i.e., ei ¼
E2=ð2�D0Þ
0 NiN

b: The result is

dNi

dt
¼ �kNi � qðD0 � 1ÞvN�b�1Ni þ qvipiðN1=N2ÞN�b;

ð31Þ

with N ¼ N1 þ N2: Here (3) and (12) have been used. By
summing over i in (31) one recovers Eq. (29).

An equivalent form is obtained after rearranging
terms and taking into account the definition of the
average replication velocity (30). It reads as

dN1

dt
¼ � kN1 þ qN�b�1½ð2� D0ÞvN1

þ ðv1p1N2 � v2p2N1Þ	; ð32Þ

and an analogous expression for the second species
obtained from (32) by interchanging the indices 1 and 2.
It can be clearly seen that the first term of the bracket
corresponds to the growth of the total population, while
the second describes the effect due to a weighted
difference in the population numbers. Expression (31)
or (32) represents a strongly coupled set of non-linear
equations with a novel type of power-law behavior (with
negative exponent �b). This set of equations is the
central result of our paper since it can be considered as a
population dynamics describing the coupling of two
populations mixing on a fractal, and as we show below,
opens up the possibility to have a non-trivial coex-
istence.

If one of the species, say B2; is not present, then p1 ¼
1; N2 ¼ p2 ¼ v2 ¼ 0 and hence v ¼ v1 ¼ vr; N ¼ N1

and Eq. (29) becomes equivalent to (10). The same
happens if both species are equivalent, i.e., for v1 ¼ v2
when v ¼ vr:

A simple further equivalent form can be derived by
using relative densities ci � Ni=N: The equations
describing the populations then become (by using (32)
and(29))

dc1

dt
¼ qN�b�1ðv1p1c2 � v2p2c1Þ; ð33Þ

with c1 þ c2 ¼ 1: The temporal change of the densities is
determined by the weighted relative difference in the
densities. Note that they are multiplicatively coupled to
N�b�1 which is proportional to the average width of the
filament covering. For D0 ¼ 1 this factor is just 1=N and
it is proportional to the spatial concentration or the
density of the total population. For 24D041 (fractals),
this factor is the fractal spatial density of the population
as a whole. According to the detailed stability analysis
(see Appendix A) the coexistence of competitors is stable

if 0oao1; and one of the species excludes the other one
if a41:

In the next section, we analyze dynamics of competing
species in a simple chaotic dynamical system, the baker
map. Since our theory contains some non-trivial
assumptions our aim in the following section is to verify
them. Here we show that gðzÞ is given by Eq. (19) in this
process, find a perfect agreement with the stability
criterions, and determine the parameters a and o from
numerical experiments.

6. Numerical results

In this section, we present numerical verification of
the new type of population dynamical equation we
introduced before. We have already sown that coex-
istence in open flows is possible (K!arolyi et al., 2000;
Scheuring et al., 2000), so we deal with the quantitative

verification of the theoretical results.
For computational simplicity, we use the so-called

baker map to model the flow (Toroczkai et al., 2001).
This can be considered as a simplified model of
stretching and folding in a chaotic flow observed
periodically after specified time intervals. Thus, in this
case t; the time lag between instantaneous multiplica-
tions of the species, is an integer number denoting the
number of snapshots taken of the flow between two
consecutive multiplications. The baker map, acting on
the unit square, gives the new location ðx0; y0Þ of an
individual starting at point ðx; yÞ:

x0 ¼ ax þ ð1� aÞyðy � 1=2Þ; xA½0; 1	;

y0 ¼ 1

a
y � 1

a
� 1

� �
yðy � 1=2Þ; yA½0; 1	; ð34Þ

where ao1=2 is the parameter of the baker map, and
yðxÞ is the Heaviside step function. The action of the
baker map is shown schematically in Fig. 4. The area
preserving property of this baker map models the
incompressibility of realistic hydrodynamical flows,
while outflow is modeled by neglecting the area hanging
over the edge of the unit square. Starting with any initial
conditions, after a few steps of iterations both species
will be distributed along narrow filaments parallel to the
y-axis.

After t baker steps, individuals of species Bi multiply
and give birth into a vertical stripe of width si covered
by resource A; lying along the borderline of the
previously occupied region of species Bi parallel to the
y-axis. In the numerical experiments, we used t ¼ 1; that
is, the species multiplied after each baker step. Regions
which are invaded by both species after instantaneous
multiplication are divided between them in a ratio of
s1=s2: It is expected that (26) describes the time
evolution of the species, reaching the fixed point (B.4)
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evaluated in Appendix B. Fig. 5 shows in a typical case
how the equilibrium state with coexistence is reached
after about 18 baker steps. Similar results were obtained
with various other parameter settings, in accordance
with the theoretical results. We checked the validity of
form (B.4) against the numerical results in steady states.
Nn

i is the fixed-point number of individuals of species Bi:
The fixed point values are found to fulfill (B.4), see
Fig. 6.

Next we check the validity of (26) for the time
evolution before reaching the steady state. We measure
the population numbers in discrete time n and use
relation (B.3) to extract the form of the probability
distribution g (see Appendix B). Fig. 7 shows p1 as a
function of N1=N2 for fixed parameter values, but for
various initial conditions. There is a single function
covering the measured points which can well be fitted by
the form g1ðzÞ ¼ za=ðza þ oÞ: In all cases ao1 was
measured indicating that the coexistence fixed point is

Fig. 4. Two consecutive steps of the baker map and two replications ðt ¼ 1Þ for the single-species model. The bands of width s become occupied by

B in each replication. The material hanging over the unit square is discarded.

Fig. 5. Reaching the equilibrium states with the coexistence of two

species is shown. Initially, two patches of species were placed, one

patch of B1 in xA½0; 0:1	; yA½0; 1	; and another patch of B2 at

xA½0:1; 1	; yA½0; 1	: The parameter values are a ¼ 0:4 for the baker

map, and s1 ¼ 0:003; s2 ¼ 0:001 for the competing species. The areas

covered by the species are shown right after the multiplications taking

place. After an initial transient (time steps 1–4), we have a rapid

convergence to the fixed point (time steps 5–18), after that we have an

equilibrium setting in (time steps 18–20).

Fig. 6. The dependence of the probabilities p1 on N1=N2 in the non-

trivial fixed points. The initial positions do not influence the fixed point

reached. The curve hðzÞ ¼ z=ðz þ s1=s2Þ is shown with solid line for

s1 ¼ 0:002; s2 ¼ 0:001; with dashed line for s1 ¼ 0:003; s2 ¼ 0:001;

and with dotted line for s1 ¼ 0:004; s2 ¼ 0:001: All the measured

fixed point values fulfill gðznÞ ¼ z*a=ðz* a þ oÞ ¼ hðznÞ ¼
zn=ðzn þ s1=s2Þ: The fixed points are marked by crosses ða ¼ 0:25Þ;
black squares ða ¼ 0:3Þ; stars ða ¼ 0:35Þ; and circles ða ¼ 0:4 as the

baker parameter).

Fig. 7. The dependence of the probabilities p1 on N1=N2 with s1 ¼
0:003; s2 ¼ 0:001 values, and with five different initial conditions. The

parameter of the baker map was a ¼ 0:4: The initial positions do not

influence the fixed point reached. Solid line shows the function gðzÞ ¼
za=ðza þ oÞ with a ¼ 0:81870:002 and o ¼ 2:31270:006: The para-

meter of the baker map was a ¼ 0:4:
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stable. Also note that oEðs1=s2Þa was found in all
experiments, which implies that (18) holds.

We also measured how a depends on the parameter of
the baker map, or, on the fractal dimension D0 of the
outflow curve of the chaotic saddle. We found that a ¼
0:79 ln a þ 1:54; see Fig. 8. Using the fact that D0 ¼
ln 2=lnð1=aÞ; we obtain a ¼ 1:54� 0:55=D0:

7. Discussion

We derived a novel type of coupled population
dynamic equations for two populations competing on
a fractal set provided by open chaotic flows. The
equation for the number of species in a given fixed
range of the flow can be written in the general scheme
(cf. (32))

dN1

dt
¼ a1

N1

N

� �
N

�b
1 � kN1; ð35Þ

dN2

dt
¼ a2

N2

N

� �
N

�b
2 � kN2: ð36Þ

The coefficients ai of the replication terms depend on the
relative densities (denoted by Ni=N � ci) only. Their
explicit form follows from (32). For example,

a1
N1

N

� �
¼ q

N1

N

� �b

ð1� D0Þv
N1

N
þ v1p1

� �
: ð37Þ

The structure of these equations is similar to that of (1)
and (2) or (13) and (14). The time derivative is the sum
of a gain term and a loss term, but now the gain term
contains a non-trivial negative power of the population
number and is coupled to the other population in a non-
linear way. These equations describe the population
dynamics in an imperfectly mixed environment of
dimension 1oD0o2: The fractality D0 of the mixing

region (in our case of the outflow curve) appears in the
power b ¼ ð2� D0Þ=ðD0 � 1Þ: In this set of equations a
phenomenological function ðp1Þ is also present char-
acterizing the probability that a given population is on
the surface of the fractal support with free access to the
single available resource. Based on general arguments
and a simple model, this function turned out to be a
normalized power-law distribution of type (19). This
form expresses a kind of ‘‘advantage of rarity’’ principle:
for exponent 0oao1 the derivative is infinite in the
origin, a very small increase in the size of the weaker
population leads to a drastic increase of the probability
for being on the free surface and hence to grow. On the
contrary, for a41; only a relatively large population size
has considerable growing probability, in this case the
weaker population dies out. With exponents larger than
unity this form does not allow for coexistence.

The presented mathematical forms and the conditions
for coexistence remain valid if m42 species live in open
chaotic flow, a numerical evidence for which has been
reported by K!arolyi et al. (2000). It is natural to expect
that the probabilities pi; i ¼ 1;y;m appear in the
generalized form of pi ¼ ðoieai Þ=ð

Pm
i¼1 oieai Þ; where ei

are the partial width of the species and oi are
phenomenological constants.

Although in the numerical simulation, based on the
baker map as a model flow, we only found stable
coexistence, we also carried out simulations where the
biological process was not based on parallel stripes filled
out homogeneously with individuals, as assumed in our
theory. In these cellular automaton-like simulations the
replication and competition process is carried out on a
uniform rectangular grid of lattice size e0: This e0 can be
considered as the smallest distance between the indivi-
duals, or the linear size of a single individual below
which there is hard-core exclusion among them.
Individuals of each species can occupy the center of
each grid cell. When they are advected by the flow into
another grid cell during the time t; they are instanta-
neously placed to the center of that grid cell. During
reproduction, they give birth to new individuals in the
surrounding empty grid cells, whose centers are within a
distance si: If more than one species tries to give birth
into the same grid cell, only one of them will be able to
do so according to one of the following rules: rule I,
both species can win this competition in each cell with
equal probability, or rule II, both species can win this
competition in each cell with probability proportional to
the number of individuals of the same species intending
to give birth there, or rule III, always the better
competitor (with higher s) wins. Our results show that
the coexistence depends on which rule has been applied.
In some cases one of the populations was competed out,
but even in such cases the distribution function was
found to be of the shown form, with an exponent a41;
in full harmony with the theory. We may conclude that

Fig. 8. Dependence of a on the parameter a of the baker map. Various

points are measured values for multiple s1=s2 ratios. The dashed line is

the function aðaÞ ¼ 0:79 ln a þ 1:54:
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the exponent a is determined by the flow (see Fig. 8) and
the biological process (see the different competition
rules). It is worth mentioning that with the same rules on
a lattice, in previous simulations (K!arolyi et al., 2000)
for the more realistic fluid dynamical case of a flow
around an obstacle we always found coexistence. This
indicates that the boundary layer present around the
obstacle enhances the chances of survival.

Our theory does not describe the effects of diffusion.
Besides the fact that for individuals of small but
macroscopic mass and size, like e.g., phytoplankton,
diffusion is not believed to be important, it can be
shown (T!el et al., 2000) that weak diffusion in such
models only renormalizes the replication rates. As a
consequence, the cutoff scale below which fractality
cannot be observed is somewhat increased, but the
population dynamical equations remain unchanged.

In this theory the location dependence of the death
and replication rates is not taken into account. Such
effects can be studied in numerical simulations (K!arolyi
et al., 2000; Santoboni et al., 2002) and are not expected
to change the essence of our findings.

In conclusion, we have shown that a particle-like
(microscopic) model of individuals competing for a
single resource around a fractal outflow curve of a
chaotic flow leads, on the level of the total number of
individuals, to dynamical equations with unusual
singular terms. These describe enhanced intra- and
decreased inter-species competition due to inhomoge-
neous mixing. The appearance of unusual population
dynamical equations can be expected in general in all
cases where the individual dynamics is not taking place
on full compact regions of the space but are restricted to
fractal subsets of it.
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Appendix A. Coexistence analysis: fixed points and their

stabilities

It is simple and instructive to study the time-
continuous dynamics of the widths ei; i ¼ 1; 2 in and

around steady states. Assuming, as before, c ¼ const:;
we find from (28)

leni ¼ cvipiðen1=en2Þ: ðA:1Þ

The weighted sum of the fixed points widths (A.1) gives

en1v2 þ en2v1 ¼
cv1v2

l
: ðA:2Þ

For the stability analysis we shall use the explicit
form (19) for the function g: Thus (A.1) translates
into

len1 ¼ cv1
e*

a
1

e*
a

1 þ oe*
a

2

; ðA:3Þ

len2 ¼ cv2
oe*

a
2

e*
a

1 þ oe*
a

2

: ðA:4Þ

Formula (A.2) shows that one species always survives.
Without loss of generality, we can choose this to be
species B2; and everything remains valid with the indices
1 and 2 switched. It is worth defining

zn � en1=e
n

2 : ðA:5Þ

Since en2 is not zero, the ratio of the fixed point equations
(A.3) and (A.4) yields

z*1�a ¼ v1

v2o
or zn ¼ 0: ðA:6Þ

The first equality describes the zna0 coexistence fixed
point while the second describes the non-coexistence

fixed point.
Eqs. (28) of the continuous case written out explicitly

are as follows:

de1
dt

¼ �le1 þ cv1
ea1

ea1 þ oea2
; ðA:7Þ

de2
dt

¼ �le2 þ cv2
oea2

ea1 þ oea2
: ðA:8Þ

The linear stability of a fixed point ðen140; en240Þ will
be given by the eigenvalues of the stability matrix E;
calculated from (A.7) to (A.8) as follows (here we also
used (A.3) and (A.4)):

E ¼ l
�1þ al

cv2
en2 �al

cv2
en1

�al
cv1

en2 �1þ al
cv1

en1

0
BB@

1
CCA:

The eigenvalues of E are easily calculated as

Lþ ¼ �lð1� aÞ; L� ¼ �l: ðA:9Þ

One eigenvalue of the width dynamics is always the
negative of the chaotic advection’s positive Lyapunov
exponent. As long as the parameter a is less than unity,
the other eigenvalue is also negative.

We find that for 0oao1 coexistence is stable, for
a41 it becomes unstable, that is one of the species dies
out depending on the initial values.
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The case a ¼ 1 is special. It follows from (A.6) that for
a ¼ 1; and oav1=v2; the non-coexistence point is the
only fixed point, and it is stable. (If o4v1=v2 then
ðen140; en2 ¼ 0Þ is stable, if oov1=v2 then ðen1 ¼
0; en240Þ is stable fixed point.) Having a ¼ 1 with o ¼
v1=v2 implies that all points fulfilling (A.2) are fixed
points of marginal stability. Thus, stable coexistence is
found in the

0oao1 ðA:10Þ

regime.
The stability conditions are the same for discrete-time

dynamics, as well.

Appendix B. Numerical determination of the probability

p1

We observe that by dividing rearranged (26) for i ¼ 1
by that with i ¼ 2; one obtains

s1p
ðnÞ
1

s2p
ðnÞ
2

¼ MðnÞ; ðB:1Þ

where

MðnÞ ¼ elN
ðnþ1Þ
1 ½Nðnþ1Þ	b � N

ðnÞ
1 ½NðnÞ	b

elN
ðnþ1Þ
2 ½Nðnþ1Þ	b � N

ðnÞ
2 ½NðnÞ	b

: ðB:2Þ

From this, p1 ¼ 1� p2 is easily found as

p
ðnÞ
1 ¼ MðnÞ

MðnÞ þ s1
s2

: ðB:3Þ

This relation provides us with a method for measuring
how the probability p1ðzÞ � gðzÞ depends on the ratio
z � N1=N2 at any instant of time. We use this
observation to extract the form of the g function from
numerical results.

In fixed points N
ðnþ1Þ
i ¼ N

ðnÞ
i ¼ Nn

i ; the fixed point
value of MðnÞ is Mn ¼ Nn

1 =Nn
2 � zn: From (B.3) it

follows that

gðznÞ ¼ zn

zn þ s1
s2

� hðznÞ: ðB:4Þ

This implies that the fixed point zn must be the common
point of the graphs of gðzÞ and hðzÞ for any aa1; where
hðzÞ happens to be the function g belonging to a ¼ 1 and
o ¼ s1=s2:
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