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Transient Chaos

1 Introduction
Transient phenomena have always played an important role in various fields of Sci-

ence. In the last two decades we also learned that chaotic processes are common
ubiquitous in the realm of nonlinear systems. The question then arises: Can tran-
sients display chaotic behaviour?

At first glance one might think the question is meaningless since chaos is an

asymptotic property which manifests itself only after a very long observation of the

system. Characteristics, e.g. Lyapunov numbers, are defined only in the infinitely
long time limit. These features seem to be incompatible with the possibility of
defi ning chaotic transients.

A somewhat more detailed analysis, however, Ieads to an affi.rrnative answer.

First, let us note that in experimental situations one never has infinitely long time
intervals. In fact, what is needed for experimental observation of chaos is a well

defined separ.ation ol time scales. Let t6 denote the internal characteristic tinre
of the system. In continuous time problems f6 can be the average turnover time
of trajectories in phase space or, in nonautonomous systems, the reciprocal value

of the driving frequency, while in discrete dynamics it can be the tirne step itself.
Suppose, one observes chaotic looking signals of average lifetime r. A necessary

condition for these signals to be chaotic is that ihey last much longer than the

internal characteristic time, i.e.
r>>fs

If this criterion holds, one can apply the concepts worked out in the theory of
dynamical systems in order to decide whether the signals are chaotic or not. The
difference between permanent and transient chaos lies in the actual value of r. In
case of permanent chaos z is practically infinite while transient chaos is characterized
by a finite average lifetime r. As a matter of fact, one cannot exclude the possibility
that well known chaotic systems like, e.g., the H6non attractor, would turn out to be

(1)
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Figure L: Tlansient chaotic signal of the logistic map u,.r-1 - 1 - ar2^ at parameter
value a : L-75488 where the attractor is a 3-cycle. This signal belongs to initial
value co : 0.15 and is chaotic up to 76 steps. The duration of the chaotic part is
longer than the average lifetime which is r : 3L at ihis pararneter value (to : 1)

transiently chaotic during a much longer observation than usual. As for experiments,
one follows a pragrnatic view and requires for transient chaos r to be of human. scales,

i.e. not to be longer than days.
A transiently chaoiic signal has the following characteristic property. It looks

chaotic up to length r and then switches over, often quite abruptly, into a nonchaotic
behaviour which governs all the rest of the signal. An example is shown in Figure 1.

It is an essentially new feature of transiently chaotic signals that by observing
them in a phase space one finds, besides the actual attractor, another inaariont
obiect which is responsible for the irregular transients. These objects are called
chaotic or strange rcpellen. In fact, in higher than one-dimensional systerns they
are often partially attractive, i.e. attractive along certain special hypersurfaces
(stable manifolds) of the phase space and, therefore, they should be called chaotic
sodd,les. In order to simplify the language we shall use here the term repeller also in
higher diruensions. We mention in passing that strange repellers may, in principle,
coexist with chaotic attractors. This corresponds to signals which exhibit a given
type of chaotic behaviour on time scales r and switch over into another type of chaos
(having e.g. another Lyapunov exponent) asymptotically.

Note, transietrts of other type may also exist in dynamical systems. An example
is provided by trajectories which dpproach an attractor but are far away from any
repeller. These transients are nonpersistent and do not exhibit chaotic behavior
although the true asymptotics might be chaotic. Thus, tronsient to chaos can be
something completely differcnt from transient chaos as the latter must be connected
with an underlying strange repeller but the former not,. In what follows we assume
that the actual attractor is sirnple and study chaotic transients-

X



Tlajectories starting from points of a chaotic repeller (or of its stable uranifold)
neuerleave the repeller and exhibit chaotic rnotion forever. It is, however, completely
unlikely to hit such a point by randorn choice since the repeller is a set of zero
nteasln'e (a fractal) and is globally not attractive. What is obseraable experimentally
is not the repeller but rather a srnall neighbourhood of. it. Tlajectories starting close
to the repeller can stay for a long time in its neighbourhood and show chaotic
properties, but sooner or later they escape the neighbourhood. These are just the
trajectories producing transiently chaotic signals. We shall also see that the ftactal
properties of chaotic repellers are nlore pronounced than those of attractors. Due to
the interplay between chaos and escape, repellers are fractals along the expanding
directions (unstable manifolds), too.

Another essential point in understanding transient chaos is the fact that one can
define a natural rnedsu,re, a special invariant distribution characterizing the motion
on the repeller. Even rnore important is that an approxirnant to this distribution
can be obtained experimentally. The approximate distribution is specified on a
small neighbourhood of the repeller, just in the spirit of what has been discussed
above. The advantage of having such a measure is that instead of temporal averages
also ensemble aaerages can be taken just like for chaotic attractors. If one uses the
approximate distribution, the averages will be subject to some errors the amount of
which can always be estimated easily.

Historically, transient chaos was first observed in the Lorenz model for control
paraureter values (differeni from the standard one) where fixed points [1, 2] and a
limit cycle [3] wa-s the attractor. Subsequently, lots of theoretical papers [4]-[68]
reported this phenornenon in all kinds of nonlinear systems: low-dirnensional maps

[8, 12], nonlinear oscillators [4, 14], delay equations [19], partial differential equations

124, 25) and coupled map lattices [35, 54]. The first comprehensive investigations
were initiated by the discovery that chaotic transients appear typically in systems
passing through a ct'isis configuration [16]. The importance of the natural measure
on repellers and of quantities related to it were pointed out in Ref. [19] which gave
new impetus to the research. More recent work deals with the characterization of the
natural measure in which the application of the thennodynamic tormalism turned
out to be of great use [29, 41, 48].

The phenomenon of transient chaos is not at all restricted to physical systems.
Biological tirne series are, e.g., good candidates for exhibiting this type of behaviour,
a prototype of which could be data from epidemiology [69].

The first measurement in which chaotic transients were systematically observed
was an experiment on Rayleigh-Bt4nard convection close to the critical Rayleigh
number where transients were followed over days before settling down on a periodic
attractor [ZO]. .a*erwards a number of papers appeared reporting finite time chaotic
behaviour in systerns like: a cornpass forced by a magnetic field l7Ll, a laser [72],
the Rayleigh-B6nard convection at high Rayleigh numbers [73], electronic oscillators

[74, 75], and a parametrically forced pendulum [76]. Nowadays a convection loop
experiment [77] and a spin wave experiment [78] seem to provide the best represented



examples of rneasurements on chaotic transients. More recent investigations include
also the dynarnics of a bouncing ball [79]. another laser system [80], a driven
magnetoelastic ribbon [81] and the thennal convection in liquid crystals [82]. In
spite of this irnpressive list. the experirnental study of transient chaos seems to be
much less extensive than the theoretical one. In many cases the phenomenon has
only been mentioned and it is very well possible that transient chaotic signals have
been considered to be uninterpretable and were therefore discarded. We hope ihis
paper helps to fill in the gap between theory and experinent and encourages more
quantitative measurements.

Finally, it is worth mentioning two further experimentally accessible phenomena
strongly related to transient chaos. One is the appearance of. lractal basin bound-
aries [L6), [83]- [111]. If two or more attractors coexist in a system their basins of
attraction are separated by basin boundaries. These boundaries might be fractals
which has the consequence that trajectories started in their vicinity exhibit very
complicated and unpredictable motion before settling down into one of the possi-
ble quite simple attractors. Basin boundaries are typically stable manifolds along
which one or rrtore repellers, situated between the attractors, can be approached

[103]. In the case of fractal boundaries at least one of the repellets is chaotic.
In fact, many observations of transient chaos, including also experirnents (see eg.

172, 73, 74, 79,, 80, 82, 89]) can be due to trajectories starting close to a fractal
boundary separating multiple attractors.

Another phenomenon related to our subject is what is sometirnes called noi.se

induced ch,aos. First, let us notice that transients seem to be stable against noise

[19]. In certain cases the increase of average lifetime r has been observed in the
presence of random perturbations [20]. It rnight also happen that noise pushes
trajectories back in the vicinity of the deterministic repeller which leads then to an
asymptotic chaotic behaviour (positive Lyapunov exponent along noisy trajectories)

[89],[112]-[115]. This can be interpreted as noise induced chaos [113] the properties
of which are strongly connected with that of the underlying deterministic repeller.

The aim of this paper is threefold. First, we would like to call the attention of
experimentalists to the fact that a quantitafiue characterization of transient chaos
is possible and that this can go beyond the measurement of the average lifetime
to which all experiments have so far been restricted. Emphasis will be mainly on
scaling or multifractal properties. Second, we summarize recent theoretical advances
for low dimensional systems and show that they lead to a considerable increase in
accuracy. Third, we present a few applications. We discuss briefly the case of
attractors at the onset of chaos where these uniuersol objects can be described via
associated chaotic repellers. Furthermore, some models of. di,sordereil systerns and
the phenomenon of. inegular scatterino are presented to illustrate the use of these
concepts beyond the scope of dissipative dynamical systerns. (To assist readers not
interested in theoretical aspects, technically rnore involved sections are marked by
an asterisk (.).)



2 General Concepts
In this section we quantitatively characterize transient chaos. In order to irave a con-
sistent terminology. discrete time dynamical systems will be considered only. These
can always be deduced from continuous time dynamics by taking an appropriately
defined Poincar6 map or a stroboscopic map. which roughly corresponds to taking
repeatedly snapshots of the system at multiples of [he c]raracterisiic time t6. By
using such maps one reduces the dimensionality of the system by one and makes
thus better visualization possible. In fact, Poincar6 or stroboscopic maps have been
obtained from experimental data on transient chaos and often proved to be low
dimensional [75] - [81].

After observing chaotic looking signals on finite time scales one must answer the
question if ihey are really chaotic. In the characterization of such signals we may
distinguish different levels which can be summarized as

. measurement of the average lifetime, or escape rate,

o construction of the repeller in phase space,

r construction of the natural invariant distribution on the repeller,

o measurement of spectra characterizing the repeller and the distribution.

Following this hierarchy from top to bottom, one finds criteria for deciding whether
the systeur is chaotic and, if so, also a measure for the strength of chaoticity. We
discuss these levels separately.

2.L Escape rate
In the Introduction we mentioned that typical trajectories escape any neighbourhood
of the repeller. A quantity measuring how quicHy this expulsion occurs is the so-
called escdl,e rcte lL7l. Let us imagine that a large number l\f3 of initial points
is distributed (uniformly) in a region I containing the repeller. I is supposed to
be a simple set with a smooth boundary, e.8., a sphere. By iterating trajectories
starting from the initial points, many will leave the region I after a certain number
of steps. let lY" denote the number of trajectories staying still inside f after rr
steps, and take JVo so large that /V" >> 1. As z gets large one observes, in general,
an exponential decay in the number of survivors [2, 5, 8,, t2,, L3, L7 r 18], that is, one
finds asymptotically

.N,,

16 '\' exP(-on) (2)

where rc is the escape rate. A large rc value implies very strong repulsion. A vanishing
escape rate means that the system looses its repelling property.

From a practical point of view the choice of region I is an important question.
Theoretically, the asymptotic decay d,oes not depend on the particular form of the



region, provided it does not contain the attractor. Therefore, one can sirnple take a
finiie phase space volume, cut out from it certain surrounding(s) of the attractor(s)
and consider this as f . If one knows lnore or less where the repeller is situated.
the best choice is a close neighbourhood, or a region with a large overlap. so as to
avoid a very drastic decay in the number of survivors already in the first few steps.
Anyhow. since the initial decay is not governed by the sarne law, general experience
shows that one urust wait up to a number of steps before trying to read off the
escape raie from (2).

The definition of the escape rate tells us that the number of survivors decreases

by a factor of l/e after about 1/rc steps. This means that the rnajority of trajectories
does not live longer thanLf n in a region containing the repeller. Therefore, it is
natural to ideniify this number with the average lifetime of transients, i.e. to write:

1

lf'
(3)

Note, this lifetime is the one with respect to a discrete dynamics. The lifetime in
the corresponding continuous-time system is approxirnately given by tsln. Note,
this way of obiaining r is more precise than a direct measurement from a time series

since the end of a chaotic signal is not uniquely defined. An even more accurate
method applies [18, 48, 66, 68] provided one succeeds in finding periodic orbits on
the repeller (see section 4.4).

It is worth emphasizing that the existence of a well-defined positive lifetime for
transients does not at all imply their chaoticity. One might also mea.sure the effective
Lyapunov exponents on tirne scales shorter than r [3, 10, 40, 60] and find thern to be
positive. But notice, trajectories around any kind of repeller haae positiae Lyapunou
exponents due to the repelling feature. In order to decide if the transients are really
chaotic or not one needs more information. Qualitatively, the visual appearance
(nonperiodicity) of the signal might help: around simple repellers trajectories should
be regular. This is, however, only a hint, and more precise criteria require a direct
study of the repeller's structure.

2.2 Constructing the repeller
We start the discussion with a numerical procedure illustrating the essence of chaotic
repellers very clearly. Then we turn to a method which is well suited to analyze also
experimental data since it is based on the investigation of ensembles of trajectories.
Unfortunately, strange rq>ellers have not yet been constructed in this (or any other)
way from experiments. The construction is, however, feasible and, we believe, also
unavoidable in order to find better contact between theory and experiment. Finally,
a powerful numerical algorithm is presented.



Figure 2: A horseshoe: schematic drawing of intersecting stable und unstable man-
ifolds of a periodic orbit (fixed point) denoted by a dot

2.2.L Horseshoe Construction

This method is based on the observation that unstable (hyperbolic) periodic orbits
seern to cover a chaotic repeller densely, a property which is in common with chaotic
attractors. Let us imagine that we choose a given hyperbolic periodic orbit in
an i,nuertible rnap and plot its stable and unstable manifolds, that is the surfaces
along which the orbit is attractive in the direct and in the time-reversed motion,
respectively. If these surfaces happen to cross each other once at so-called homocli,nic
points, they must do so infinitely many times since the images or preimages of such
an intersection are again of the same type, forruing together a houroclinic orbit.
Homoclinic orbits never really reach the periodic orbit in question since they belong
simultaneously both to its stable and unstable manifolds. Consequently, in such a
situation the stable and unstable manifolds must have a complicated, intertwined
structure. Figure 2 shows schematically how this can happen. The horseshoe [LL6]
structure of the manifolds and the existence of homoclinic orbits have long been
known as prerequisites for chaos [116, 117]. Interestingly, the stable and unstable
manifolds of. difterent periodic orbits of a strange repeller all run very close to each
other and all the homocli,nic oftits belong to the chaoti,c rcpeller.

Based on these observations, the following simple procedure is suggested for
approximating a chaotic repeller in invertible maps. Find a hyperbolic orbit as
simple as possible. This can be a fixed point or any short cycle. Plot its unstable and
stable manifolds. The unstable manifold can be obtained by starting a large number
of points in a small ball around the periodic orbit and iterating them forward. The
stable manifold is obtained in an analogous way by using the inverted map. The
intersections of these manifolds are parts of the repeller. Since only a finite number
of branches of the manifolds can be constructed in practice, the intersections will
provide us with an approxima.nt to the repeller, which, however, can already reflect
a lractal structure. Figure 3 displays stable and unstable manifolds in H6non's map
at parameter values where a strange repeller exists.

We thus accept as conditions for a repeller to be chaotic either the existence of



Figure 3: Siable and unstable manifolds of fixed point .Fa in the H6non rnap z' :
L - a,nz * byrA' -- x at parameters @ : 2.0, b: 0.3

a horseshoe in its manifolds, or a fractal geornetry, along both stable and unstable
directions of the repeller. (If the manifolds of the hyperbolic orbit we chose do not
intersect each other, the orbit does not belong to a chaotic repeller.)

The procedure might be of use also in the problem of. fractal basin boundary.
In systerns with invelsion symnretry, e.g., the origin typically belongs to a repeller
separating two or more attractors. By plotting the invariant rnanifolds of the origin,
or any other hyperbolic periodic orbit, one can thus decide whether the orbit belongs
to a chaotic repeller. If so, the stable manifold immediately provides us with the
fractal basin bounda^ry (or, in case of coexisting repellers, with a part of it).

It is worth emphasizing that for one-dimensionalmaps the horseshoe construction
cannot be applied (the system is not invertible). Nevertheless, chaotic repellers are
in such cases also fractals as will be illustrated in chapter 3.

Finally, we mention that the fractal structure of a repeller is equivalent to the
statement that the topological entropy of the system is positive [119]. This means
that the number of possible trajectories grows exponentiatty with the length. This
has been known as the criterion fiot weak chaos [11S] as it does not imply the pos-
itivity of the Lyapunov exponent on an attractor. It always implies, however, the
existence of a horseshoe (the positivity of the Lyapunov exponent on the horseshoe is
automatic). Therefore, it is a necessary and sufficient condition for transient chaos.

2.2.2 Ensemble method

The idea of this method, introduced in Ref.[19], is to follow an ensemble of trajec-
tories and select the pieces of them which stay in the vicinity of the repeller. First
one chooses arbitrarily a region around the expected position of the repeller, but



Iying outside of the attractor. This can be the same region as f used in rneasuring
the escape rate. Next, distribute a great number /[o of initial points in this region
unifonnly, and iterate theur forward. A criterion is needed for deciding when a tra-
jectory is already far away from the repeller. The condition suggested in Ref.[l9]
was to study effective Lyapunov exponents over! say. 15 steps and ask if they were
close to those characterizing the (nonchaotic) attractor. In case of fixed poini at-
tractors it was sirnply the negativity of all effective Lyapunov exponents which was
interpreted as indication that the trajectory had lefi the repeller. All trajectories
leaving the repeller earlier than n6 steps are discarded. The choice of this number
is somewhat arbitrary, it should grow with increasing lifetime r. Experience shows,
nsf r is a number not larger than 10. The idea is to select thus loag li,aedbajectories
in some broad surroundings of the repeller. Due to escape, of course, the majority
of initial points drops out at this stage. If we liked to have about 103 trajectories
of length not less than 26, the number .tY6 of initial points is to be chosen as about
103exp(orro) which can be in the order of 106.

To select points really close to the repeller, these long lived trajectories are to be
truncated. The first nlsteps are to be discarded in order to forget initial conditions
and to exclude points which happened to be close to the stable manifold but not yet
to the repeller. The end of the long lived trajectories must be cut off, too, since the
neighbourhood defined by the effective Lyapunov exponent method or by any other
means need not be a close vicinity of the repeller. Therefore, in order to be sure
that the points kept are really close to the repeller one discards the last (rro - rrt )
steps. Hence, only trajectories of nrinirnal length ns give contribution.

The middle, truncated. parts of the long lived trajectories are then plotted in
phase space and provide a good approxirnation of the repeller. An exarnple is shown
in Figure 4. It is to be checked, of course, if the result depends on the choice of
fl0, no, ??,1, and if it does, one must try again with larger values until convergence
sets in.

The method can, in certain cases, be somewhat simplified. First, instead of an
extended region for initial points one may choose a straight line or a narrow strip
in phase space. Second, we can avoid to follow effective Lyapunov exponents, which
would be difrcult experimentally, e.g. by finding iu phase space a neighbourhood
of the repeller. In fact, as escape takes place along unstable directions, one can
generally select simple surfaces and say that trajectories are not yet far away from
the repeller if they are still between these surfaces (for an example see the caption
to Fig.4).

2.2.3 Single trajectory (PIM triple) method

The aim of this method is to find a very long chaotic transient [52, 65] (see also

[103]). The procedure is based on the fact that trajectories starting close to the stable
manifold of the repeller stay for a long time in the vicinity of the repeller. The closer
they start to the stable manifold the longer is their lifetime. For sake of simplicity
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Figure 4: The repeller of the H6non rnap at parameters a : 2.0,6 : 0.3 obtained by
the ensemble method. 106 initial points were distributed uniformly in the interval
(l y l< 0.5,c - 0). Iteration was stopped for I x l> L.2. The first t0 and the last
20 steps of long lived trajectories were discarded. Compare the repeller with the
homoclinic points of Fig. 3

we give here the algorithm for systems with two-dimensional phase spaces. Take an
interval TE sornewhere in the Poincard plane so that it intersects the stable manifold
of the repeller. Then choose initial points uniformly distributed on AB and measure
their lifetirnes, i.e. the times until they exit a neighbourhood (e.g. I) of the repeller.
Take then the point having the maximal lifetime inside the interval (i.e., the proper
interior maximum - PIM). Its two neighbours are expected to lie on two different
sides of a branch of the stable manifold. The two neighbours define a new interval
M oo which the procedure can be repeated since the new interval will probably
also intemect the stable manifold [65]. It is thus possible to continue the refinement
of the original interval further in this way until the distance between neighbouring
points is not smaller than some predetermined value 6 << 1. Take now the endpoints
A", B" of the interval, on this finest level, containing the maximal lifetime point and
iterate them forward. They approach the repeller along the stable direction but
simultaneously move apart in the unstable direction. When the distance between
these trajectories increases another predetermined value 6' ) 6, stop iteration and
refine the actual distance between the two trajectories, as described above, until a
new interval shorter than 6 is found.

By a subsequent repetition of iteration and refinement one then finds a series
of intervals which are always within a tube of size 6t around branches of the stable
manifold and, after a transitional time, also within a distance 6' of the repeller.
Therefore, plotting any point of the intervals, after the transitional time, we find a

10



good approximant to the repeller.
In cases where the ensernble and PIM triple rnethods can be applied simulta-

neously. they yield identical results. The same repeller shown in Fig. 4 has been
constructed in [52, 65] by means of the PIM triple algorithur. In generalr one can
say that the ensemble method is better suited for studying the repeller in systems
with long average lifetirne, whereas the PIM procedure can be applied also in cases

where long transients are rather exceptional. The advantage of the latter is that
the amount of error is well controlled, it would be, however, difficult to apply this
procedure in experimental situations.

2.3 The natural invariant distribution
The natural invariant distribution p,(r) tells us how often different pieces of the
repeller are visited by trajectories never escaping it [19]. (Such a natural lneasure
exists also for nonchaotic repellers, but due to their sirnple geometrical structure,
it has no special televance, in contrast to chaotic cases.) Since neither infinitely
long trajectories nor the precise fractal form of strange repellers are known, one is
forced to work with an approximate natural mea.sure. For this purpose, choose a
fine but finite coaero,ge of the repeller by unifonn bones, (cubes) of size e << l-.
Next, consider points of trajectories which stay in a close vicinity of the repeller
obtained, e.8., by the ensemble method. Let lY denote the number of such nearby
points, take all boxes which contain at least one nearby point and enurnerate them.
Tlrese nonernpty boxes define a coarse grained repeller.

The approxirnate natural rneasure on a coarse grained repeller is given by the
frequency showing how often different boxes are visited by truncated trajectories.
More precisely, the approximate measure P;(e) of nonempty box i is [19]

4(.) : f
where lY; is the number of nearby points falling into box i. It is desirable to take JV

large enough so that ff; >> L in nearly all nonernpty boxes. P;(e) then provides a
good approximation to the natural measure inside box,i:

4(.) = l"r*".,Ip(r).
An example for an approximate natural distribution on a coarse grained repeller is
given in Fig. 6. We emphasize, the procedure is applicable also to experimental data
with a good statistics, provided the repeller has been constructed.

Points of asymptotic PIM triple trajectories (with an uncertainty 6' ( e) are
expected to yield the same distribution 4(e).

It is worth mentioning that there exists also another strongly related measure
the so-called conditionally inaariant one [5], which is defined not on the repeller but
rather on its unstable manifold, and can be used to construct the natural rneasure
as will be illustrated in sections 3 and 4.

(4)

11



2.4 Characterization of the natural measure

Both the repeller and its natural invariant distribution might have cornplicated struc-
tures. Therefore, it is worth working out characteristics (which are sirnple nurnbers
or sirnple functions of certain variables) even if they do not contaiu all the inforura-
tion the distribuiion does. Tirese characterisiics will be the analogues of those used
in studying permanent chaos [120]-[137]. (We note that the characteristics can be
worked out for ang kind ol inaariant distri,buti.ons but we give here the definitions
with respect to the natural measute only. The generalization is straightforward.)

Let us consider first the Lyapunoa exponent. For sirnplicity we assume that there
is only one expanding direction in the system. Take a small interval of length A6
along the unstable direction in a nonempty box i. It will be mapped after n steps
on a longer interval of some length A,. The ililatatiotr factor L"lLo can always be
written as exp(41;(rz)) where the positive quantity Au(r) is the di,latation etponent

[122] belonging to box i. The Lyapunov exponent .\ times n is simply the average
of the dilatation exponent with respect to the (approximate) natural measure, i.e.

,\ ,\., t;Au(*)4(.).
n? (5)

(6)

We repeat, the positivity of the Lyapunov exponent is not decisive for transient
chaos as it characterizes all hnds of repellers.

Introduce, therefore, the set of generalizedLyapunov exponents .\o [120]-[12a] by
studying the averages of the quantities exp(A1;(n)g) where q is any real number.
The generalized Lyapunov exponents can be obtained, for large values of z, from
the relation 1L20, L22l

I eLt;(n)q4(.) *, s*^en
;

By taking the derivative for g --+ 0 the Lyapunov exponent is recovered: )o : l. If
the spectrum of Lyapunov exponents is found to be nontrivial, i.e. if ,\o f ,\6 for
q + 0,, the invariant object is necessarily a chaotic repeller.

The ftactal properties of the repeller and the natural measure describe how quan-
tities scale when changing the box size e. According to standard definitions {125]-
[13a] the generalized dimensions Do follow from the scaling form

I4(u)o "' 6(c-r')Dq (7)

for decreasing e. Chaotic repellem 0..r", in general, nontrivial fractal properties.
Typically, one can associate a few symbols to difierent regions coniaining the

repeller, and order a corresponding symbol to a trajectory step if it visits the given
region. Thus, a sgmbolic classif.cation [136] of trajectories around the repeller be-
comes possible. By following trajectories of length z around the repeller one can
specify how often a given syrnbol sequence {S;} occurs. These path probabilities
f({S;}) provide a complementary dynamical characterization of the system from
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which the s:t of. generalized, entropfes [135]-[137] can be de.luced. The entropies Ko
are defined for large n via the relation

I P({s;})o A-/ 
"(L-s}rr'rrr

(8)
{s;}

where the summation is taken over all occuring symbol sequences. K6 is the topo-
logical entropy.

In summary, we give, in terms of the quantities introduced, a list of criteria frorn
which the existence of a chaotic repeller and transient chaos follows:

o positivity of the topological entropy (implies in general the positivity of any
other Kc), or

e noninteger fractal dinrension D6 or, in case of an integer Do, a nonconstant
Do distribution, or

o nontrivial .\o spectrum.

As measures for chaoticity the topological entropy, the fractal dimension, or the
tyapunov exponent on the chaotic repeller can be used.

In hyperbolic cases, i.e. when the stable and unstable manifolds never touch
each other tangentially (no homoclinic tangencies exist), the spectra xq, Kq and Du
are related in a simple way, a,s we shall see below.

In experimental analyses the dimensions would be best accessible as they can
directly be deduced after ureasuring the box probabilities P;(e). The Lyapunov
exponents and entropies are more difficult to obtain. If all periodic orbits of length
??. can be found (n not too large), they follow also from cycle properties [66] as will
be discussed in section 4.4 (see also section 6). The topological entropy is, e.g.,
nothing but the logariihm of the number of z-cycles divided by rr.

An application of the relations given above yields always results being subject to
some errors due to finite resolution and statistics. How these errors can be minimized
in low dimensional systems by using the thermodynamic formalism is the subject of
the next sections.

3 One-dirnensional maps

Strong dissipation causes drastic contraction in phase space which might lead to
an appioximately one-dimensional discrete map on a Poincar6 plane. Such maps
can, in fact, be found in experiments on transient chaos [75]. One-dimensional
maps are typically noninaertible which distinguishes thern from others arising from
smooth flows. Therefore, one-dimensional maps are to be treated separately. They
are not only simpler, but the investigation of them prepares the understanding of
higher dimensional cases. As we shall see, what is going on in a one-dimensional
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t(x)

Figure 5: Typical map generating transient chaos on some interval .[. Note that
points lying outside the two subintervals dl) .od {t) "r.rp" -I after one time unit.
Points which do not exit in n steps are contained in the (n - 1)si preirnages of the
two subintervals (i.e. in ihe nth preimages of .I), and exhibit chaotic behaviour, on
time scale n' due to the global expansivity of the map

map generating transient chaos reflects exactly ihe behaviour along the unstable
manifold of maps of the plane.

Tlansient chaos occurs if an interval .[ is rnapped, under the dynamics /(c), not
into or onto itself but rather also partially outside itself. This implies, in general, a
strong expansivity of the rnap. As an important class we shall consider here single
humped functions, as illustrated in Figure 5. It is irrelevant how the map looks for
z values outside .I. In fact, there rnigtrt be one or more attractors far away but if
there is no feedback from these regions, the transient chaotic behaviour is completely
specified by the function / defined ozr f.

In this chapter we study chaotic repellers and their invariant measures in maps
belonging to the class defined by Fig. 5.

3.1 The natural distribution and its relation to the condi-
tionally invariant measure

As mentioned earlier, chaotic repellers of one-dimensional maps can be constructed
either by the ensemble method or by the PIM triple algorithm. Both procedures
work well and can be used also for obtaining the approximate natural measure on a
coarse grained repeller. As an illustrative example we use the map

n' - f(r): 1- ar2 (e)

which generates transient chaos for a ) 2. The shortest interval .[ containing the
repeller is then (u*,-c*) where ,* : -(1 + tE+4a)/(2") is the left fixed point
of /. Figure 6 shows the approximate invariant measure on a repeller covered by
uniform boxes of size e :2. 1-0-3.
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Figure 6: Natural distribution for map (9) at a : 2.05 obiained by the ensem-
ble method on a grid of size e : 0.002. The number of initial points distributed
uniformly in .I was L0?, and the first 10 and the last 30 steps of trajectories were
discarded. The truncated trajectories contained about 106 points ensuring a very
good statistics. The escape rate was estimated by comparing the number of trajec-
tories of length 10 and 30 in f which yields, via (2), rc : 0.071.1.. The lower part of
the figure illustrates the organization of the repeller

Figure 6 contains also useful information concerning the repeller's structure. One
easily notices that the crudest approximation to the repeller cover consists of two
intervals, the two preimages dr) at d 4t) of f. At the next crudest stage each of them
splits into two smaller intervals. By subsequent refinements a complete hierarchy
is discovered, the zth level of which contains all the zth preimages of .f. The
preimage intervals are called cglinders and will be denoted by 4"). The subscript f
enumerating them tuns, at the rzth level, up to 2'. (Base 2 is a consequence of the
double-valuedness of the inverse /-1.) Note that the cylinders provide a coverage of
the repeller with nonunitormboxes which, however, fits to the repellerts structure in
a very natural manner. An equivalent way for defining the cylinders is to consider
the rz-fold iterated map .f". Its graph is strongly oscillating and has 2' branches
(Fig. 7). The intervals which are mapped exactly onto f by the n-fold iterated map
are just the cylinders of level n. This shows clearly that points in any .{") do not
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Figure 7: The threefold iterated map (9) at a : 2.05, and cylinders .{t). Th" dot*
denote 3-cycles

leave the ba.sic interval f earlier than n * L steps. Notice, the folds with derivatives
smaller than unity are, for sufficiently large n, always outside .I. Thus, the maps
investigated are eapansiue or, in other worlds, hyperholic on the repeller.

3.1.1 The conditionally invariant measure

We now introduce the conditionally inaari,ant measure [5] which is conceptually
difierent from, but strongly related to, the natural one. The conditionally invariant
measure (or c-measure fot short) is defined on any region containing the repeller,
aud describes how trajectories escape this region. tr'or simpliciin we take the latter
to be .[. Consider the conditional probability [5] that a given region is visited by
trajectories (with random start in r) which do not escape I in m steps. Note,
certain trajectories exit already in the next step. Their last points are, therefore,
far away from the repeller and fill in the gaps between cylinders. Consequently, the
conditional probability is defined on the entirc interval f. The limit to which this
conditional probability converges for rn -+ oo is the conditionally invariant measure.

The c-measure can be considered as one maintained by pumping new points lnto
the system exactly according to the rate they escape it (formatly, by multiplyrng
the number of points everywhere by a constant in each step), so that an invariant
distribution is obtained. The distribution tells us then how often certain regions are
visited in the system which is subject to the afore-mentioned flux of points. Note,
this formulation is general and applies also to higher dimensional systems.

It is easy to construct the conditional probability distribution for trajectories of
minimal length rn in the basic interval. One simply takes a modified version of the
ensemble method in which the last steps are not discarded. Thus, only the first rn
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Figure 8: The conditionally invariant measure for map (9) obtained by discarding
the first 1-0 steps of trajectories and plotting all points which stay inside the basic
interval. Parameter, initial conditions and box size e are the same as in Fig. 6.

steps are cut off and all the rest of trajectories is to be plotted before escaping .I.
Fortunately, the procedure converges exponentially fast and m - 10 provides already
a very good approxirnation to the exact c-measure. Figure 8 shows the result for
our illustrative example. Note, the measure has a smooth, density everywhere in the
basic interval.

To connect the conditionally invariant measure with the natural one let ts rcstrict
[19' 57] the density of the c-rneasure on cylinders of level n. This, of course, requires
a renormalization so that the total measure on the cylinders is unity. The measures
p!") ofintervals d") "htr""terize 

then the motion of trajectories which end in one of
the cylinders of level rz. For n sufficiently large, these are the trajectories exhibiting
long lived chaotic transients. Therefore, it is obvious that the limit of the cylinder
measutes p!"' obtained for ?t + oo can be considered as the exsct natural measure
on the repeller [19].

We thus have two different approximants to the natural measure: the distribution
P; and that of p!"). Th" equivalence of the two methods can easily be illustrated.
Figure 9 displays the c-measure restricted to cylinders of level 5. Alternatively, one
can smooth out the approximate natural measure shown in Fig. 6 on the same set of
cylinders. The resulting distribution is hard to distinguish from that of p!") ultu"dy
at this relatively low level.

3.L.2 flobenius-Perron equation

For a deeper understanding it is essential that the density p(z) of the conditionally
invariant measure can be obtained also by analytic means. As shown in [5, 31] the
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Figure 9: Measure obtained by restricting the conditionally invariant one of Fig. 8

to cylinders of level 5 specified by accuracy € : 0.002. (The two outmost cylinders
are not resolved by the grid)

density follows from the iteration scheme

p,-r (r )
I f'(') Ir€.t-l(0')

where the summation is taken over the preimages of n'. By iterating any positive
initial function ps(c) on .[ the series e"@) will diverge or die out unless the coefficient
R takes the value

R: e*. (11)

With this R the series p"(r) converges towards a finite limiting p(c) which is fn-
dependent of the choice of the initial function, provided it is smooth. p(c) is the
density of the c-measure. In practice, one tries different values for R until a conver-
gence sets in. Fortunately. the convergence, if present, is rather fast and the limit
can be reached with good accuracy at the 8th siep [31] for the class of maps we are
studying. An example is shown in Figure 1.0. One, thus, simultaneuosly finds both
escape rate and density from an eigenvalue problem. In case of permanent chaos
when rc: 0 (10) reduces to the well-known hobenius-Pen'on equation.

By iterating (10) one clearly sees that a singularity builds up at the maximum
of /(c) but it is outsid,e I. This supports again the view that the density of the
conditionally invariant measure is a smooth function on neighbourhoods of hyper-
bolic repellers. Using the definition of the density, the cylinder measure pj') can be
expressed as

p:") -
[,erlil p(r)d*

I; I,erlo p(r)d*

( 10)

(12 )
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p(*) of our illustrative example obtained from equation (10) as

constant initial function. (The relative error is 1-0-3 )

This simplifies further if we take into account the fundamental observation concern-
ing the smoothness of p which enables us to pull out the actual value of the density
from the integrals, for sufficiently small cylinders. Since the density does not change
with the refinement, the asymptotic scaling in n. will be governed by the length
scales alone. Thus one finds the simple statement that the rneasure of a cylinder is
proportional to its length, more precisely

(13)

where ej;) stands for the length of cylinder .{"). th" n-independent proportionality
factor not written out here depends on the actual form of p. This relation will play
an essential role in what follows.

3.2 Thermodynamic formalism for repellers
3.2.L Statistical analogy - Thermodynamic potentials

Based on classical mathematical papers [138] - [141], the thermodynamic formalism
for chaotic systems has recently become a common tool also for physicists [142]-
[156]. Here we show how the basic concepts work in one-dimensional maps with
chaotic repellers.

Let us first notice that to each cylind"t d") one can associate a unique symbol
sequence {Si} (j : L,2,. ..) of length n. In single humped maps the symbols are
binary and ihe convention can be used that ,9; takes on the value 0 (1) if the
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trajectory started in the cylinder is in step j - 1,lefi (right) frorn the maximum
point, i.e., in the subint"r.ru,l dt) 1d1)1 ("ee fig. 5). Consequently, the cylinders
can be indexed also by the corresponding syrnbol sequences. Moreover. the cylinder
neasures are exactly the probabilities f'({S;}) for finding a syrnbolic trajectory {^9;}
of length n:

p,'i") - r({sr}).
The key observation of the thermodynamical formalisrn is the unique connection

between symbol sequences and rnicrostates of spin chains. In fact, one can interpret
symbol 0 (1) as a spin pointing down (up) and the whole string as a state of a spin
chain of length n. In order to define the interaction between spins it turned out to
be useful [138] - [1a1] to consider the logarithm of cylinder size to be proportional
to the internal energy per spin in a given microstate:

E'({Sr}) _ -llosrS')n'

Note, by this rule the additive constant of the energy scale has been fixed. The
thermodynamic limit n ---+ @ corresponds to an ever refining coverage of the repeller.
Eq.(15) reflects that the energies associated with cylinders stay finite when refining
the partition.

In analogy with diferent multifractal spectra, one might wish to make a direct
characterization of the length scale distribution of the cylinders by raising the length
scales to a certain real power B and, summing them all up at level z. The advantage
of the statistical analogy just mentionedis that we now know, in view of (15), that
e,{")0 '. a Boltzmann factor at temperatwe L/8. Their suln over all configurations is
the partition function and, since the free energy is extensive, an exponential scaling
is expected for large z:

f ,?lP ^, e-Fn(rln
i

F(B) is the free energy per spin and is called free energy also in the dynamical
context 1. The function BF(il is monotonically increasing with a negative second
derivative (just like in thermodynamics), see Figure 11. The free energy and its
Legendre transform with respect to B, the entropy S(E) - B(E - F(il), provide
a description of the length scale distribution and have been established as useful
characteristics of general multifractals [29, 41], [143]-[156]. For practical purposes,
the statistical analogy need not be worked out in more detail. What is essential for
what follows is the scaling property (16) of length scale distributions generated by
dynamical systems.

For our hyperbolic repellers the thermodynamic quantities are especially impor-
tant since all scaling spectra defined in section 2 can be derived from them, owing
to the relation between length scales and natural measures on cylinders.

rln the mathematical literature -BF(il is called the topological pressure [138]-[14U.

(14)

(15)

(16)
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Figure 1l-: The free energy for map (g) at a:2.08 in the range I Bl<J

3.2.2 Spectra of the natural measure as thermodynamic quantities*

First, notice that the total length of cylinders at level n. is proportional to the number
of points not yet escaped f after rz steps. By recalling definition (2) we obtain

To find the Lyapunov exponents, one observes that the logarithm of the slope
of. f" at z is just the dilatationfactor (c.f. section2.4) in this point. The slopeis,
however, approximately constant in a cylinder as illustrated by Fig. ?. Since the
lengih_of f is of order unity, the dilatation factor in cylinder /j') ."o be estimated
as Lf e["'. By comparing the definition of generalized Lyapunov exponents (6) with
(16) and (18) we obtain

e\q- tr, - (1 - q)r(l - g).

r(1) - t.-

The cylinder Itleasures (13) can, therefore, be expressed as

p:"\ ,-.., g'naltt).

The limit {t 0 yields the usual lyapunov exponent as

,\ - ,r+ Ft(l).

dimensions, we use theWhen calculating generalized
1341

TPT+ffi'\/1

(17)

(18)

(1e)

(21)

(20)

famous relation [130, L32,,
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where Pr and 11 denote mea-sure and size of a box. Applying it to the cylinders
and using (18). the left hand side will contain a sum involving the length scales e!")
which can be expressed by the free energy. We thus obtain an implicit, relatiol

B F (lrld=q-(q-r 
)Ds

Interestingly. for the Legendre transform of the dimensions. i-e. for the /(a) [13a]
function of the natural ulea-sure, an explicit relation follows [29, 46]

(22)

(23 )f (o) - s(E) 
IE l"-*

where 5(E) is the therrnodynarnic entropy.
Since the cylinder mea-qures are simultaneously path probabilities (see eq.(14)),

the generalized entropies can also be expressed by the free energy (use (g),(16) and
(18)):

xo - 
q@(q) - "\ -qL Q4)

By taking the lirnit 9 * 1 in (22),(2a) and by using (20), we obtain Kt : F,(L)
and recover relations

Kr-)-rc:)Dr, (2S)

first found in [19]. They tell us thai for chaotic repellers the metric entropy K1 is
nof identical with the Lyapunov exponent. Nevertheless, they are of equal sign since
the information dimension D1 is positive.

11 *_t-*ory. this is how to read off different characteristics after obiaining the
sraph BF(B) vs. B:
- Escape rate: value at, B : 1.
- Fractal dinension: intersection with the B axis;
- Topological entropy: the negative of the intersection with the vertical axis;
- Lyapunov exponent: slope at B:1.
- Generalized dimension: subtracting ng yields intersection with the

horizontal axis at 0: q - (q - L)Do;
- Generalized entropies: substracting.xB yields (F - 1)KB ;
- Gerreralized Lyap"ov exponents: substracting r yields (tJ - r))r-p.

3.3 Eigenvalue formalism*
The knowledge of the relations derived above has also practical relevance. A direct
applicaiion of scalinpl forms (6)-(S) gives less prc:ise results than thosc obtainecl
ihrough the thermodynamic forrnalism. The maia reason is that we traced back
cverything to a coverage fitting naturally to the rcpeller and to length scalcs whic[
are easy to ttteasttre. Evett tltis accuracy can be inrllrovc<l by using :ur ciplenvalrrc
formalism.
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Consider the recursion scheme [33]

Q*@')_ R(t3)" t
n€t - nlrr)

r€f - I (c')

Q,(t)
iltAt,

Qob)ffi (28 )

Since this limit is
identically 1. Thus,

(26 )

(27)

(30)

obtains the free

(31)

wlrich is an extension of (10) for real exponents B. Just like lor B:1, the iteration
of any smooth positive function Qs on .[ leads to a finite limiting 8(') with a special
and unique choice of R(0) only. We show now that this vaiue must be

R(B)- epF{p) )

that is the complete free energy can be obtained as the leading eigenvalue of an
operator (generalized Frobenius-Perron operator) defined by the right hand side of
(26).

Take the n-fold iterated version of (26):

R(t3)-"_ 
z:l**
e(p)(*')

(2e)

with
1

l/"'(d f '

Now we use again that inside cylinders the slope of the n-fold iterated function is
approximately constant (see Fig. 7). The length of a cylinder containing point c can
then be estimated ". 1/l f"'(x) l, and Znis exactly the partition sum (16). Since
the limiting function Q@\ i, finite and independent of n, the left hand side of (29)
must be exp(-B^F(9)"\.

Numerically, one evaluates Zn fot subsequent values of rz and
energy from

p F (il - Ln Z n-r(F, r') - In Z,(8,, rt)
where the c'-dependence disappears for large z. As an estimate for the error, the
quantity ln(2,2.-2123) can be used. The convergence is again exponentially
fast and, therefore, a few percent accuracy is obtained already a,t n - 8 for nraps
belonging to the class of Fig. 5. When going up to n : L2 the relative error is
as good as 10-5 in a whole range I B l< 10. The free energy in Fig. L1 has been
obtained by this method. If higher precision is needed one might use second and
higher eigenvalues of the operator to find a more accurate fit for finite n [149, 62].

Assurne we have the right R(13) so that a finite limit exists.
independent of the initial function we choose the latter to be
for sufficiently large values of n one finds

n€t - n(tr )
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A special c&-ie of eq.(26) is the one obtained for P - Ds [23]:

This expresses that the iteration is cornpensated. no prefactor is neecled, if the inverse
temperature is just the fractal dimension of the repeller. In this sense, the equation
can be considered as the Frobenius-Perron equation for repellers. In fact, the limiting
distribution P(u ) provides a smooth covering curve for the natural distribution on
the course grained repeller [23]. Eq.(32) provides a fast and accurate method for
evaluating ftactal dimensions of strange sets generated by one-dimensional maps.
For our illustrative example it yields Do : 0.905344.

Another special form is

r€t -r (r')

Prr-J*\

I f' (*) loo
(32 )

(33)

(34)

(35)

(36 )

Q,(t)
t€f-t1r') I f,(r) la-(c-L)Dq

This is a conversion of relation (22) into an eigenvalue equation and can be used
to obtain the generalized dimensions (with respect to the natural measure) directly
and with high accuracy from an iteration scheure [27, 38, 51].

3.4 Other measures on the repeller*
We briefly discuss other measures connected with repellers. A famous farnily is thai
of the so-called Gibbs nteo,sures [138] - [141],[29]. They are invariant under the map
and are characterized by the property that the measure of a cylinder is proportional
to a given powe? of the length. The exponent is the same for all cylinders and is a
parameter of the measure. For order o Gibbs measure the measur. ,{") of cylinder

4") it proportional to power o of the length. With proper normalization this means
that

,!^) ,v
tl')'

t,#)''
The natural measure we discussed up to now is just the special case o : 1 . Since the
measure is expressible through length scales, all spectra (6)-(8) for Gibbs measures
can be given via the thermodyna^rnic quantities ^F(B) or 5(E). The relations are
easy to derive along the lines of the previous section, here we just list them for the
order o Gibbs measure.
Lyapunov exponents:

Q\q

Dirnensions [33, 38, 39] :

P F (P) 
le=nq-(s-1)Dq
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The f (o) spectrurn 1L47,, 41] :

Entropies [41] :

Kq

Note that the Lyapunov exponent

P- o [39] :

f(o)- 13 IE lr- oFtot

q1
A - ,\6 it just the derivative of pF(p)

(3i)

(41)

.\ _ d(o {(o))
do

At q _ 1 we find K1 : 02 F' (o),, and

K1- o(tr - F(")) - IDr.

Since (26) holds, one can easily find also an equation yielding, e.8., Dc of the order
o Gibbs measure as an eigenvalue [38].

Another class of invariant measure on repellers is obtained by iterating the map
backward in a rand,o?n manner. By time reversal the repeller becomes an attractor
and all random iterations approach this fractal set. Difierent distributions adse be-
cause of diferent ways of backward iteration. To each value c belong two preimages
(if the map is single humped) denoted by .f,-t(") where r : t if the preimage belongs
to subinter.ru.l dt), and r : 2 otherwise. The probability for taking branch L or 2

is to be decided. We suppose this depends on the actual position only and denote
by pr(r) the probability for choosing branch L. Obviously, p2(c) - 1 - p1(z). The
resulting distribution is a multifractal, the dimensions of which were shown [51] to
be obtainable from the recursion scheme

1 q*U;'(rDpi(r)
Qn+r(c) _ T

(38)

taken at

(3e )

(40)

"t 
I /'( f;'(")) l(t-c)De

as an eigenvalue, providing a powerful way for calculating this spectrum.
Nonnatural invariant measures play no central role in the dynamical context.

They are worth studying, however, since in applications it might happen that a
map generates a fractal as a repeller, but the distribution of physical relevance is
not the natural one on the repeller but rather some of the above mentioned measures.
Examples will be given in section 5.

4 Two-dirnensional maps

Among higher dimensional systems we shall concentrate on invertible two-dimensional
maps which are well suited for illustrating the most important new features. It is
worth starting the discussion with a mechanism leading to the appearance of tran-
sient chaos and to the creation ofstrange repellers.
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4.L Crisis and beyond
4.L.1 Configuration in phase space

The phenomenon of boundary crisis [13] occurs if the basin boundary of a chaotic
attractor touches the attractor itself. This is a marginal situation since certain points
of the attractor belong simultaneously to the boundary (Figure 12). By changing
parameters further, something drastic may occur: the boundary penetrates into
the object having earlier been the attractor. This object is a union of unstable
manifolds. The unstable manifold of any simple hyperbolic cycle, e.g. of a fixed
point, has the shape of the strange attractor. If, however, the boundary cuts out
pieces from the manifold, points on these pieces approach a neighbouring attractor
lying somewhere beyond the boundary. In fact, if a piece is removed, so are all its
preimages, which means that nearly oll points of the unstable manifold are cut out
(the origin of escape!), and the remnants form a fractal set, the repeller.

-20
Y

Figure 12: Invariant manifolds in the Lozi map: r' -
The unstable manifold of the upper fixed point H + and
lower one H * (the basin boundary) are shown in a crisis
L.75. l, - 0.5

2

1 a, I r | +by,y' - r.
the stable manifold of the
configuration at a- 0,e-

This way of presenting a chaotic repeller is complernentary to the horseshoe

construction discussed in section 2. The basin boundary is a stable manifold, thus,
what we generate now are heteroclinic poidts belonging simultaneously to stable
and unstable rnanifolds of different hyperbolic objecis. The resulting pictures are,

however, equivalent since both homoclinic and heteroclinic points densely cover a
chaotic repeller.

Figures L2 and 13 show a boundary crisis situation and a configuration where the

26



Figure L3: The same as Figure 12 but beyond crisis: o : 1.8, b : 0.5- The escaping

feature is reflected also by Ih" oobo,rndedness of the unstable manifold. Local folds

are cut out

chaotic attractor has been replaced. by a strange repeller, respectively' A piecewise

linear example has been chosen since all branches of stable and unstable manifolds

can analytically be constructed in this case [15?]. The topology of the manifolds is

exactly the sarue as in the Il6non map. Figure 1-4 exhibits the repeller obtained via

sirnulation what is to be compared with Fig'13'

Notice an essential property of repellers (Figs. 13,3): the local turning points

of the unstable manifold are typically removed (just like the maximum of /(c) in
one-dimensional maps). These local folds are the places where homoclinic tangen-

cies might occur, where local stable and unstable directions become degenerate'

such tangency points are, therefore, nonhyperbolic, the map is locally nonexpand-

ing therelThis ob.ervation explains why chaotic repellers arc olten hyperbolic, while

strange attractors are probably generically nonhyperbolic. In what follows, there-

fore, we study the properties of hyperbolic chaotic repellers.

4.L.2 Critical exponent of chaotic transients

The escape rate just beyond crisis is generally small since tiny pieces of the unstable

manifoldare then cut out only. Therefore, such slightly supercritical configurations

are the best candidates for expefirnenfcl studies of transient chaos due to the per-

sistence of long chaotic transients [?5, ?6, ?8, 80, 8].]. The escape rate has been

shown 126r l4llo follow typically a power law behaviour as a nonlinearity parameter

o passes through its crisis va,lue o.:

"(o) 
,\., (a - a")' (42)
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Figure 14: Repeller of the Lozi map at pararueters o - 1.8, b : 0.5 obtained by
applying the enseruble method. LOr trajectories were started along the interval

I y l< 0.8, c : 0. Iteration was stopped if I c I became larger than 1.3. The first 20

and the last 30 steps were discarded. A topologically similar repeller can be obtained
in the H6non map at a : L.5,0 : 0.3 which is just beyond a crisis configutation
a.: t.42692...rb: 0.3

where 7 is called the critical exponent of chaotic transients. This law has experi-
mentally been verified in several cases [76, 78, 81].

A simple theoretical investigation shows [26, 34] that exponent 'y depends essen-

tially on the stability properties of a basic periodic orbit only.
Consider maps with heteroclini,c tangency crisis, when the stable manifold of an

unstable fixed point (fl- in Fig.12) is tangent to the unstable manifold of another
hyperbolic fixed point (fl*) on thri attractor. As a is increased slightly past 4",
the unstable manifold of .81 crosses the stable manifold of. fl- and the hight of the
overshoot away from both fixed points is proportional to r : a - ac (fig. 15). We

suppose the local form of the unstable manifold in such tongues is a parabola of
order z. (z : 2 is, of course, the generic case but for the Lozi maP' e.g.' z : I
is relevant.) The width of the parabola piece lying outside the stable manifold is

then of order r1l'. Ttajectories landed in this parabola piece (shaded region AB in
fig. 15) rapidly leave the repeller.

Take now the nth preimage of region /,Il. For n. large enough, the deformation
of the region is governed by the linearized map around fl+. The zth preimage AtBt
has thus dimensions of the order of r exp (-flr) and. rLl'exp (-,\in) where exp ()i)
and exp (,\j) denotes the modulus of the expanding and contracting eigenvalue at
.Ila1 respectively. Since after landingin A'B' the trajectory soon (after z steps) falls

I

0

Y
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Figure 15: Schematic diagram illustrating the configuration of stable and unstable
manifolds slightly beyond a homoclinic crisis

in AB, the escape rate can be estimated as the probability for landing in C'B'. The
probability appearing here is the one associated wiih trajectories which are for a
while in the vicinity of the repeller but then escape. Therefore, the cond,i,tionolly
inaariant tneasure is to be used in this context. In leading order we can write

n(a)-P"(A'B')-'Yt

where P.(A'B') is the conditionally invariant measure of region A'B'.
The next step is to estimate how the conditionally invariant nteasure scales

around fixed point H+. We use here an argurnent [56] which will be applied
also later. As seen in one-dimensional maps, the conditionally invariant measure
is srnooth along the unstable direction. The new feature is that now a fractal struc-
ture is present in the unstable manifold when intersected along the stable direction.
Consider a small box of size 11 (I2) along the local unstable (stable) direction. Its
conditionally invariant measure scales, therefore, as

P"(h,lz) * IJt' @4)

where dz I 1 is a nontrivial exponent (crowding index) characteriziug the local
fractal structure.

Consider now a box containing fixed point I/a . Its image has dimensions 11 exp ()i ),
l2exp(,\i) and lies around.rYa. Due to escape, the conditionallyinvariant measure
of the original box and its image will be difierent. If, however, escape is compen-
sated for by multiplying the original measure with exp ri (iust like in one dimension)
stationarity is found:

(43)

s" P"(hrlz)

Using the scaling from (44) we immediately obtain

li-rc*Iic2-0

(45)

(46)
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which connects the local crowding index with the eigenvalues at the fixed point.
As the scaling is the salne everywhere around Hq1 we can apply $!,$6) fo

region A'B'. Close to crisis r; is srnall ,therefore, in leading order c.2: -^;"1^;"
where the eigenvalues are taken cf crisis. From (43) and (44) then

follows (see [26, 3a]). This is the desired relation telling us that the stability of .I/..
at crisis and the topological properties of the map (z) completely specify the critical
exponent.

In case of. homoclinfc tangency crisis when the stable and unstable manifolds of
an unstbale fixed point (or other periodic orbit) on the boundary are tangent (like,
e.9., in H6non type maps with positive Jacobian) a similar derivation yields i26, 34]

1 ,\i.
I' z 'l,u. 

l

1 l,U. It;1,l;1-1'

(47)

(48)

where the ,\'s are now associated with the eigenvalues of the fixed point on the
boundary, evaluated at crisis.

It has been pointed out [26, 34] that the eigenvalues of the basic periodic orbits
can, in principle, be deduced in experinrents. The first experimental determination
of an unstable periodic orbit mediating crisis have been reported in [81].

For both type of crisis we have 7 ) ?o : L f z whete "ys is the criiical exponent for
one-dimensional maps with local maxima of order z [75,22, 3t,44]. This suggests
that chaotic transients are nt"ore persistentin higher dirnensional systems [34].

Finally, we note that the smoothness of the boundary has played an essential
role in the derivation above. Crisis with a fractal basin boundary does not change
the exponential decay (2) but may change scaling taw (a2). Tlansients in this cases

can be very persistent so that the increase of r can be slower than any power of
(o - o.) [16, 20].

4.2 A building block of chaotic repellers - the bakerts trans-
formation

Locally, chaotic repellers seem to be the direct products of two Cantor sets. This
can be best seen in the example of Figure 4. An elementary map producing a
double fractal repeller is generated by the so-called baker's transformation. Its
study may be useful also for experimentalists since it can probably be used as a first
approximation in analyzing experimental data. In geometrical terms the action of
such a transformation is the following: Take the unit square and cut it by a horizontal
line into two pieces with surface area c and L - c. The lower rectangle of width c
is then stretched in the vertical direction by a factor s ) 1 and simultaneously
compressed in the horizontal direction by a factor a 1 Llz by keeping the left
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Figure 16: Images (continuous line) and preimages (dashed line) of the unit square

under the baker's transformation. Points of the shaded and cross-shaded region do

not escape the unit square after one and two steps, respectively, neither forward

nor backward iterated. The black sguares and the dots denote fixed points and a

Z-cycle, respectively

Iower corner fixed. The upper rectangle is to be transformed by a stretching and

compressing factor t > I and 6 < L12,, respectively, so that its right upper corner

remains invariant. If stretching is sufficiently strong, i.e., sc, t(L - c) > 1, the map

generates transient chaos [23]. The analytic form of this transformation is

for y

frt:&tt y': sy

nt-1-b(1 -r), y'

(4e)

(50)

otherwise. The first two images of the unit square in forward and backward iteration
are shown in Figure L6. (Notice that the inverted map is obtained by interchanging

the role of c and gr and by replacing s and tby Lla and 1/0, respectively. The

constant c in the inverted map can be any number ct for which c'f a, (l - c')lb > L.

The repeller's properties do not depend on the actual value of c and c'.)

Let us distdbute JVe initiat points on the unit square uniformly. A portion c
of them falls on the strip elongated by a factor s in the first step. Since only a
ratio L/sc of the total length overlaps with the unit square, the number of particles

staying inside is just Nolt. Analogously, from the other strip we find /V6/f survivors.

Altogether, a portion of.Lls + tlt of initial points does not escape the unit squate

in one time step. It is easy to check that this ratio stays constant as iteration goes

on, therefore, the escape rate is n': -ln(l/s +tlt\.
There is, of course, no stable limiting distribution of points on the unit square,

due to escape. This can be compensated for by multiplying the number of particles

staying on the unit square exactly by exp(rc) after each step. Thus, the number of
points stays constant, and the probability of finding one of them in a certain region
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defines a distribution. The probabilities of the two strips appearing in the first step
are obviously exp(n)/s and exp(n)//. At the nth step there will be 2" vertical strips
of different widths. These widths can be expressed as o,''0"-- ) trl: 1r2r...,n. It
is easy to check that the probability of finding particles in strip j of width elttbn-"'
is jnst exp(nn )s-mtnt-n. Notice that the term appearing behind exp(nn) is just the
reciprocal value of the dilatation factor exp(41;(z)) for all points in a horizontal
strip. Thus, we can express the conditionally invariant lneasure of strip 1 as

pt^) - enne-Ari(") (51)

Qualitatively, this means that unstable regions (large A1) are less frequently visited.
It is also clear that the limiting c-measure will be concentrated in infinitely narrow
strips along unstable manifolds, and will have there a constant density.

Let us turn now io the natural measure. By overlapping the first preiruage and
image of the square, the common part contains points not escaping in the first step
of the forward and backward iterations. Sirnilarly, the union of the nth image and
preiurage defines trajectories staying inside the square at least rz steps (Fig. 16) in
boih the direct and the inverted map. This clearly shows that never-escaping points
belong to a double fractal. the repeller. Boxes generated by the overlap procedure
provide a natural coverage (so-called generating partition [136]) to the repeller.

The width .[]) of horizontal strip i is of type s-mtm-n ] nr = !,,...2, i.e.

.l?) - e-A1;(n)

Sirnilarly, that of the vertical strips is

,*) : etL2i('),

(52 )

where A2; is a contraction exponent (the dilatation exponent of the inverted map
multiplied bV (-t)). These sets are difierent, therefore the fractal properties along
stable and unstable directions are also different. The proper way for characterizing
such a direct product fractal is to introduce partdoldimensions [131] Dtl,';: !r2
(f:L for the unstable direction) and to obtain the total dimensions by idding the
partial ones.

In order to get the natural measure, the smooth density of the conditionally
invariant one is to be restricted to boxes of the partition at level n, and is to be
renormalized. Since the weight of a strip has been deterrnined, the renormalization
must be done by keeping the rneasure of a strip constant. This means that eq.(51)
holds also for the natural measure of a strip. For the natural measure of a box of
vertical .iz" .[i) inside a given vertical strip j one finds

pl? - 4")"*n'l;)

(53 )

(54)

The exact natural measure is then obtained in the ?L --+ oo limit and the spectra of
section 2 can easily be worked out.
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Figure l-7: Schernatic diagram of the phase space partition around a chaotic repeller
obtained by taking the zth image and preimage of a region D. Siable strips (dashed
lines), unstable strips (continuous lines) and invariant manifolds are shown. The
boxes provide a coverage of the repeller

4.3 Thermodynamics*
4.3.L General setup*

Let us consider now a general repeller. Take a region D of linear size of order
unity containing the repeller, distribute many initial points on it and follow the
iterates. The map stretches (compresses) D along the unstable (stable) direction
and bends it so that a part of the image will lie outside D. After n )) 1 iterations
the overlap of the image with the original region will consist of narrow strips which
follow locally the unstable direction of the repeller. We call them unstable strips
(fig. 17). As seen, the unstable manifolds behave smoothly around the repeller
(folds are outside), therefore, unstable strips will only be slightly bent. The average

width .f;) of an unstable strip is, by definition, proportional to the local contraction
factors exp(42(z)) of points falling, after n steps, in the strip. Due to escape, the
majority of points will be outside the original region. If after each step the density
of points inside D is multiplied just by exp(rc), a finite limit will be obtained. The
resulting conditionally invariant measure has a srnooth (but not necessarily constant)
density along the unstable manifolds.

Without compensation, the mea.sure of an unstable strip would be proportional
to the area of its nth preimage. The preimage of D consists also of strips but these
run parallel to the local stable directions of the repeller. The average width .t") of
such sfoble strips (fig. 17) is proportional to the contraction factor of the inverted
map, i.e. to exp(-At(")), where Ar(") is the dilatationexponent of points inside
the strip. Consequently, the rzth image of such a strip will have dirnensions of order
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unity and exp(Ar(*)) along unstable and stable directions, respectively. We thus
conclude that a stable strip is nothing but the zth preimage of an unstatrle one. The
measure of an unstable strip withoui cornpensation would, therefore, be proportional
to .1"). By taking into account also compensation, we find that the conditionally
invariant measure in unstable strip 1 is

ii' ) ^, €nnrlj ' ^-, en' e- Lr;( rr )

where .t1) ir the widih of the nth preima.ge of unstable strip j.
The natural measure is obtained by taking the overlap between D's nlh image

and preimage which defines a generating partition in the system and provides, for
large n, a rather accurate coverage of the repeller. The natural measure of boxes
in the partition follows tlre.n by redistributing the c-measure of unstable strips ac-
cording to lenght scales e[") inside the strips. Thus the natural measure of box i of
length e1; Iying in unstable strip j can be expressed as

p:;) '^' tt\") "ontl,T)

(55)

(56)

We emphasize again that pj") as given by (55) is simultaneously the natural measure

of strip j. Formally, this follows frorn !.f) - exp (-rcn) which holds since escape
takes place along the unstable direction only.

The natural measure of stable strips is also needed. By summing (56) over j one
finds the natural mea.sure of strip i u, pl') - exp (rc"r)r[i), the same as for its nth
inrage. This reflects just lhe preseraation of the natural rneasure under the nrap.

Qualitatively speaking, maps generating hyperbolic repellers can be locally de-
composed into baker's transformations. Their actual form might change with the
position but only smoothly. This is the reason why the general relations are similar
to those obtained in the previous section.

In analogy to what has been done in one-dimensional maps, let us now define a
free energy based on the length scales generated along the unstable direction:

t.!?)u ,-, e-PF(iln (57)

(f(1) - r). We show now that also Lyapunov exponents, partial dimensions D[t)
and entropies can be derived from the free energy.

Note first that the dilatation factor for points of stable strip f is just exp (41; (rz)) -
Llrt). Next, observe that a given stable strip contains points having the same his-
tory (up to n steps at least), therefore, p!") ir simultaneously a path probability.
Since the natural measure is proportional to length scales, relation (6),(3) can be
expressed via the free energy, and eqs.(19) and (2a) is easily recovered.

The partial dimensions along the unstable direction can be calculated via (21)
with P1 as the natural measure inside stable strips and with length scales as the
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widths , 'f these strips: 
(n)e

r tr}. , _1.
7 ,l"|r,-rloL'\

After expressing the measures with length scales one obtains

0 F (ll) p=o-(c-l)Dq(r r : n{'

For the Legendre transform /t(or) of the partial dirnensions this implies

!t(a):91 (60)
lE= ----E-

Note, a comparison of (15) with the relation between length scales and dilatation
exponent tells us ihat the energy of stable strip i is just

E: 1Ar,(r). (61)
fL

Thus we see that for all properties connected with the unstable direction analog
relations follow as in one-dimensional maps.

Quantities containing information also about the stable direction cannot be, in
general, computed from the free energp First one might think that another free
energy should be introduced based on the length scales .11). fnir is, however, not
sufficient since compuiing the partial dimension D[') o"ud* both widths e!i) and

mea*sures p\"' of unstable strips. Therefore, it is worth defining a partition sum
weighiing length scales and measures differently. Let us write

pt"lo r*\ 'v e-flG(e,iln

Here p is a real parameter, the analog of pressure in thermodynamics. G is a
bivariate function which can be called the Gibbs potential. In view of (55) the new
partition sum is practically a sum over length scales arising along both stable and
unstable directions in the generating partition. Note that B is difierent from that
used in (57) and the free energy .F@) is recovered at B - 0. The Gibbs potential
provides in a sense the most general characterization of the repeller and its natural
measule.

For B : 0 sum (62) contains the measures (path probabilities) only, consequently

BG(B,q)1B=6 - (1 - q)Kc. (63)

By taking the limit A * 0 at p - 1, the logarithm of eq.(62) yields just the averaged
Lyapunov exponent tr(z) 4 0 in the stable direction:

T
i

(58 )

(5e )

(62 )

(64)
o(pclg,,LD

op t6-o
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As another special case the partial dimension* D?) follow fron the condition

PG(B,Q)16=_1q_rrDet-0 (65)

which is equivalent to applying relation (21) in the form:

(n)q

f ^.r1/_ , LlDiri ^.j .!'; )r s_
(66 )

(6 7)

(68 )

be ex-

(6e )

(70)

(71)

The iotal Do dimension is the sum of the partial ones [131., 122]. Eqs (63),(65) mean
that the order g entropy and partial dimension along the stable direction can be read
offas the intersection of the graph PG(P,q) (p: q fixed) with the vertical and the
B axis, respectively. This shows also that the Gibbs potential contains much more
information than entropies and partial dimensions (or the free energy) alone.

We note, the sets {.t')}' {.t")} d.o notplay equivalent roles in the formalism since
the natural measure is connected with one of them only (cf.(56)). Consequently, by
interchanging the subscripts L,2 another measure, the natural distribution of the
inuerted map, will be characterized. With the exception of topological entropy and
partial fractal dimensions these measure have nothing in common in dissipative
cases.

Finally, a few consequences will be discussed.

4.3.2 Information dimensions and metric entropy*

Although eqs. (59),(65) are iruplicit, for the order L dimensions
can be derived. A Taylor expansion of (65) around g : 1 and
(63),(64) leads to

KL - -tr(z)'P(z)'
From the relations along the unstable direction

explicft expressions
the application of

K1-uftl:]-rc
follows. Thus, the information dimension along the ustable direction can
pressed as [19]

Dl') :1 - ;'
that along the stable one as [42]

Df):]*.
I 'rtzr 1 

'

The total information dimension is their sum:

p(tt_ 1 1
1g'() + pt1)

in harmony with the Kaplan-Yorke conjecture [L27, Lzg].
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4.3.3 Dimensions of stable and unstable manifolds and the uncertainty
exponent

Stable and unstable manifolds of chaotic repellers seem to be the direct products of
a Cantor set and a surooth curve (see Fig. 3). Consequently, their fractal dimensions
appear as 1* the dimension of a Cantor set. As the stable manifold intersects the
unstable one just in.points of the repeller. tire points of intersection have the partial
fractal dirnension D["' of. the repeller. Thus, the dimension of the unstab]e manifold
is [a2]

and similarly

d,1;

d,g

t72)

(73 )

for the stable one. The stable manifoldis simultaneously a basin boundary, therefore,
the fractal dimension of the boundary is d,e : ds. Here we assume that the boundary
is the stable manifold of a single repeller.

In case of fractal boundary, uncertainty in initial conditions leads to enhanced
uncertainty in the final state. To characterize this property an exponent a has
been introduced [83]. Cover the phase space (or a part of it) by boxes of linear size e

and count the numbet ff"(u) of boxes from which initial conditions can asymptote to
several attractors. The fraction of phase space with uncertain final state is expressed
as.f = N"(e)/N(e) where il(e) is the number of boxes needed to cover the whole
region of interest. This fraction is expected to scale with the initial uncertainty € as

f - e" (74)

where o is the uncefiainty esponenf [83]. Since boxes with uncertain final state
cover the boundary, JV, - e-dt. As iY(e) changes like e-2,

d-2-dn, (75)

follows: exponent o is the codimension of the basin boundary. Eqs.(?4),(?5) provide
a useful method for measuringds via the uncertainty exponent [83]-[111]. In view
of the fact that the boundary is the stable manifold, eqs.(?3),(75) imply

o : r. - D[t) (?6)

demonstrating that the uncertainty exponent can be expressed vie a characteristic
of the repeller.

An upper bound to o can be given as 1- D[1). thor, from (6g) we obiain

,t,

t
r(1)

r(1) + F'(1)
(77)

where the left hand side might actually be quite close to the exact value. For fixed
point repellers and simple bounda.ries a : 1,.
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4.3.4 Maps with constant Jacobians*

There is an irnportant class of maps the Gibbs potential of which can be expressed
by the free energy. These are maps with constant Jacobians. Constant Jacol-rian
nleans that the area contracting ratio is position independent. Consequenily, the
product of ihe dilatation and contraction factors is spatially constant, i.e.

where ris the racobian'J'j;l ::l::l-,:il, and
therefore related as ,*) _ yr\|) and the Gibbs potential takes

pc(p,p) _ (p + p)F(p + fr) np -Ln J B.

Condition (65) can then be rewritten as

P(F(P) - ln J)tu=o-(q-r )Do(,) - (n - InJ)q

which implies for the Legendre transforrls

(78 )

its nth preirnage are
the forrn:

(7e )

(80 )

(s1)

Thus, we conclude that in rnaps with constant Jacobians all scaling and fractal
properties of the chaotic repeller and its natural measure can be deduced from the
free energy alone. This is nranifested also in the fact that relations exist among
partial dimensions and entropies [56] which easily follow froru (80,81).

4.4 Organization around periodic orbits
4.4.L Qualitativepicture
A direct determination of the length scales in a generating partition is not always
easy. Therefore, a complementary approach is of great use which is based on hy-
perbolic cycles obtainable, in principle, also from time series of experimental data
[158]. The basic idea is that periodic orbits densely cover strange sets. Consequently,
chaotic motion can be interpreted as a, wndom walk nrnong cycles. This means that
chaotic trajectories happen to behave as periodic with a given periodicity for a short
time, but than they switch over to other temporary periodic behaviours again and
again. They cannot follow a cycle forever since periodic orbits in chaotic systems are
unstable. (In the transient chaotic signal of Fig. 1 ,e.g., a definite period-2 behaviour
can be observed for about L2 time units.) If chaotic trajectories visit unstable cycles,
the characteristics of chaotic motion must be expressible through cycle properties.
From dynamical point of view the most relevant ones are stability (better instability)
properties described by eigenvalues of the linearized n-fold iterated map in periodic
orbits oflength z (cycle eigenvalues for short). Thus, one expects that chaos can be
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chara.cterizcd by meaus of thc cycle cigerrvalrrr:s, provirlerl srrflir:icntly many pcr:iocli<:

orbits can be analyzed. This programnrc ha.s l;e<:rt workccl out, itr clctail [18], [158]-

[164], inclucling also transient chaos [18, 48, 55, 56, 66, 163, 68]. An aclvantage of
this approach is the fact that, using the so-callcd zcta fttnction [140, 48, 66, 68],

very accurate results can be obtainecl already frotu r:rtlter short cycles. Ilere we

surnmarize the main points of the method.
Notice first tha,t cylinder lengths in one-dirncrrsioual mal)s catr be expressccl by

cycle eigenvalnes. The fixecl points of ihc z-fold iterated nlap ate just periocl-rr'

points. They are obtained a^s the intersections of the <liagonal with t'hc graph of .f".
One sees irnmecliately (Fig. 7) that eac.h cylintlcr of level rr contains orte z-cycle.

Since they belong to cylinders, the slopes of /" at a cyclc point is approximatelv the

sarne as in any point of the cylinder containing this periodic orbit (a property used

several tirnes in section 3). Consequentlv, we find €!") - lll f"'@i) | where ui is
the rr-cycle belonging to cylinder f. Thus, one can :rlso say that it is the siabilitv of
periodic orbits what determines the partitiou fuuction and thc frec energy.

4.4.2 Length scales vs cycle eigenvalues*

Consider now two-dimensional maps. Take an unstablc strip and its rzth preiura.ge.

The courmon part of them defines points which retrrrrt approxirna,tely to their initial
positions after z steps and must, therefore, coutaiu an z-cycle. Let us write the
moclrrli of the cycle eigenvalues as exp ()r(")) , i : I(2) for the expanding (contract-
ing) eigenvalues. The contra.cting eigenvalue of t,hc pcriorl-rr. point in rurstable strip
j will clefine the widih of this strip, i.e.

,.'!;;) - e)'j(")' (s2)

Sirnila,rlv, the wirlth of the nth preimage strip is.irrst thr: reciprocal value of exp ()1r'(n)):

.!;) n,.-)ri(") (83)

(84)

(85)

(86)

Thu.s, one can express

the nreasures of strips via
write

ancl

all relevant length scales:t,ttrl, itr view of (55), (56),also
stability properties of the n,-(.ycle.s. Cotrscquently, we c&Ir

D e-^rilr\fl n-, 
"-0F(0),,

t

Ii is instructive to see an equivalent local approaclt, too. Consider a box of cli-

mensions 11 and 12 along unstable and stable clircr:tions, rcspectivelv, which contains
an n-cycle point. For the c-measure of this box scaling form (44) holcls. Applying
the sa,rne argument which led in case of a fixed point to relation (46), we now find

t ?- Arj(n)n 

"\zi(r\g ^, e-(l1c(0,r,)*rp)rr

lr;(rr) K,?tr + )z;(n,lu2 - 0
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where a2 is a local crowding index along the stable direction around the z-cycle
point i. The natural neasure inside the same box scales as

P Ut . Iz) N 11"t 1zo'

with cu1 < 1 as the crowding index along the unstable direction. Owing to the
relation between natural and conditionally invariant measures a2 is in common for
these measures. Frour the preservation of the natural lneiLsure an additional relation
is obtained:

tru(r)*t + Az; (n)o,

(87 )

(s8)

(8e )

(e0 )

(e 1)

(e2)

(which is forrnally the same as for chaotic attractors [160]). Equations (86),(SS)
show that the set of crowding indices can uniquely be determined by measuring the
cycle eigenvalues. Based on the fact that )6(n)ln plays the role of the energy (see
(61)), relations (60) and (81) can directly be derived from this local approach.

4.4.3 Zeta functions*

Note that the sums (84),(85) contain aII n-cycles which are allowed to exist in the
system. This means that the fixed point, e.g., appears also as an n-cycle. In general,
certain cycles are repetitions of shorter ones. All are here included, not only the
so-called primi,ti,ae cycles which cannot be decomposed into more elementary ones.

The zeta function approach [140, 48, 66, 68] allows us to concentrate on primitive
cycles only. Consider the free energy. Eq.(8a) can be rewritten as

t Zne-11;(n)nl N 1,
;

with the condition that the smallest z value which makes the sum compensated
(neiiher decay nor divergence) is just z(0) : exp(BI(B)). Take now the expression

O(r) - TT zne-r1 ;b)e

which, according to (89), must diverge at z : "(9). Next, we use a basic property
of periodic orbits: the eigenvalue is the same everywhere along such an orbit. Fur-
thermore, each period n can be written as r repetitions of a primitive cycle of length
np i n - rtup. (For primitive cycles r : 1). Consequently, we have for all points d

belonging to an n-cycle lri(r) : r),y(nr) where )to(ro) is the dilatation exponent
along a primitive cycle. Thus, the terms on the right hand side can be rearranged
as a sum over all primitive cycles and a sum ovet repetitions

CI(") - t no}(r"oe-trp(nn)B)'
P r=1

The geometric sum can be summed up yielding

rlo zn r e- \r obt o7 
p

T
p 1 - Znpe-)1 p{r.p)p'

0(") _
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This can be written as z times the logariihmic derivative of the zeta function

CBQ)

Since a divergence in fl(z) corresponds to a zero of ((z), the free energy follows from
tlte smallest positiae root of the zeta function.

An analogous argunrent based on (85) leads to the fornr

Cp,oQ) - [Itt - znp e-^rp('p)q*rzpbo)F)
p

the smallest root of which yields "(F,d - exp(BG(P,q)+t"ql. For more general
expressions see [68].

The advantage of the approach is that the zeta function was obtained after a
partial sutnrnation over arbitrarily long trajectories. It is, therefore, not surprising
that accurate results can be obtained by keeping only a few short primitive cycles
in the products of (93),(9a). Att efficient computational tool, the cycle ealtans,ion

[48, 66] is based on the fact that longer orbits can be approximately pieced together
from a few short fundarnenrfal primitive cycles. The product in the zeta function
can always be written as a sum over the fundamental cycles plus corrections. The
latter contain differences of contributions from primitive cycles and from pseudo
orbits pieced together from shorter primitive cycles and the fundamental ones. Since
the pseudo orbits are typically close to real ones, the corrections are rather small
and the cycle expansion converges exponentially fast. The rnethod ha-* succesfully
been applied for calculating escape rates, topological entropies and partial fractal
dirnensions of repellers [48, 66, 68] from cycle eigenvalues up to length n - 6 - t2.

5 Applications

5.1 Period doubling attraetor
The onset of chaos is quantitatively identical for broad dasses of systems. Theoret-
ically, this unhtersal behaviour is understood by applying a renormalization group
transformation [165] which shows that many details are irrelevant and the relevant
features can be described in terrns of universal one-dimensional maps even if the
original system is higher dimensional.

A typical route to chaos is the period doubling cascade. At the accumulation
point of this cascade systems reach the borderline to chaos and possess an attractor,
the so-called period doubling attractor, which is already much more complicated
than a periodic one but is not yet really chaotic. The properties of this attractor
can be understood by means of a one.dimensional map c' : g(r) where g is a univer-
sal function, the fixed point of the afore-mentioned renormalization transformation
[165]. The attractor is a fractal with a natural measure generated by a 2- periodic
orbit. Its fractal and multifractal properties have been studied in great detail [166].

(e3)

(e4)
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Figure L8: A schematic plot of the universal map /" the invariant set of which is the
period-doubling attractor. In reality, the branch dFgb) is much closer to a straight
Iine

It is a relatively recent observation [167, 150] that the'attractor aE a geometrical
object appears also as a rcpeller of a map J" which can be expressed via universal
quantities. This rule follows also from a general theory of renormalization and
applies to other universal attractors, too [168]. The functiot f, for the quadratic
map family consists of a straight line branch f"(r\ : opc whith dF : -2.5029-..
being a universal scaling exponent [165] and a sornewhat curved branch f"(") :
dFg(t).The function J., is defined on the interval 7 : (L/a41) (Figure 18).

The repeller of /, is geometrically identical with the period doubling attractor.
Cylinders generated by the preimages of f provide also a coverage of the attractor.
One must, however, be careful when trying to study rtetric properties, since the
natural measure of the repeller is not the same as that of the attractor! The natural
measure on the attractor is generated by the forward iterates nn: g"(xs) of c6 : 1.

It is easy to check that this trajectory visits equally often all cylinders of level n,
consequently, the natural measure on the attractor must be the same in all cylinders.
Fortunately, this can be interpreted also a.s an invariant measure on the repeller,
namely, the o :0 Gibbs nxeaEure.

It is, therefore, possible to study the characteristics of the natural measure on
the period doubling attractor by means of the methods presented in section 3. The
most important quantity is the set of dimensions since entropies and Lyapunov
numbers on this attractor belonging to the borderline of chaos are still zero. One

might determine the free energy via equation (26) and calculate Do ftom relation
(36) with o : 0. Alternatively, an eigenvalue equation can be written directly for
the dimensions of the order 0 Gibbs measure as

Q^(")

ret; t(r,)
(e5 )

sF g (x)
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Since the map has tw r branches, the topological entropy Ks oL the repeller (in
contrast to that of tire attractor) is ln2. By using highly accurate polynornial
expansions for g(r). the generalized dimension of the period doubling universal
attractor could be deterndnd by this method with ten digits accuracy [62].

It is interesting to note that there exists another eigenvalue equation containing
/" which yields as its highest eigenvalue the other universal exponent 6 [165] of the
period doubling route to chaos. Based on the observations of [169, 66, 170] ihe
equation can be written as

Q,+1( *') _ Q*(r) f'"(c).
1

6
(e6 )

re t, t (r')

Noie that this equation is not of Frobenius-Perron type as the function describing
the dynamics appears here without modulus. Nevertheless, it defines an iteration
scherne: starting with any smooth and positive initial function convergence sets in
only if 6 takes on the universal value which can thus be determined very accurately.
Equivalently, this can be done also by determining a zeta function based on the
primiiive cycles of the map /" [66].

5.2 Models of disordered systems

Renormalization group transformations or, more generally, length scaling or dec-
imation procedures when applied to models of disordered systems often lead to
unbounded iterations in the parameter space.

A classical example is provided by the phonon spectrum of fractals. hnagine a
two-dimensional Sierpinski gasket lattice of point masses linked by identical strings
and allowed to move perpendicularly to the plane of the lattice. A decimation
procedure applied to frequency ar of the collective motion yields [171] a new frequency
u' : u(5 - u). Note, this recursion is equivalent to xt : L - 3.75x,2 and generates
transient chaos. A quantity of central interest is the spectrum of eigenfrequencies.
The invariant set of the frequency iteration is obviously part of the spectrum. Thus,
each point of the repeller represents an element of the vibration spectrum which
exhibits, therefore, a Cantor set structure. For more detail see [171].

The investigations of quantum properties [172] or dymamical aspects [L73r I74]
of fractals, as well as certain models of amorphous solids [1?5] , localization [176]-
[178] and quasicrystats [179] all lead to (sometimes higher dimensional) recursion
relations possessing strange repellers. To illustrate how properties of the repeller
can be connected with quantities of solid state physical relevance, we discuss the
case of the random field Ising model [180]-[187] in some detail.
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5.2.1 Random field Ising chain

Take a semi infinite chain of Ising spins {s1, s2. ...ss,, ...} in an inhomogenous exter-
nal field {lt4, It2, ...,, lrn,,...} with Hamiltonian

H
j=1

where K is a coupling constant. For simplicity we use units in which ksT : L.

The set of local fields {h;} is considered as a particular realization of a random field
distribution assuming at each site the values */r and -&. with probabilities p and
L - p, respectively.

The therrnal properties of the system are obtained by evaluating the partition
sum 

@

Z - E exp (-Ks1 s2 - h1\ - f (fs;sj+r * hit)) (9S)

{rt rtz r...} i=2

at a fixed realization of the fields and averaging the free energy over different re-

alizations afterwards. The summation over spins can be made in a recursive way

[180]. Since the first spin appears in two terms of I/ only, the partial sum is easily
obtained in the form

Z - t 2cosh (K'r+ h.1)exp(-f(r";sj+r * bd). (99)
{rz rrl r...} i=2

As s2 can take on the values *L only, an exponential representation of the cosh

function gives:

(e7)

(1oo)

(103)

where

(101)

This form shows that spin L gives the contribution -A(Krh1) to the free energy,
and generates simultaneously also an extra field g(K, h1) for spin 2. The partition
sum can thus be written as

Z - t exp (1,(K, h1))exp (-Ks2ss - x2sz- ilfrrrj+r * h;r;\) (102)
{ r2 ,rt ,...} ,=3

where t2 is an effective field acting on spin 2, and is given by

cosh (K tr 1 hr) - exp (/( K,ht) * g(K,,h)s2)

A(K',r)

g(K,,*)_ 
|f"(cosh 

(K * r,)/cosh(If - ")).

t2:hz*g(K,ht).
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Figure 19: Left: Random map generating the local field c. Right: The inverse of
the map. The repeller of this map is the attractor of the randonr iteration (104) for
any choice of the probability p

Note that the partition sum has a similar form to the original one (with z rather
than h for spin 2). Hence, the summation over subsequent spins can be carried out
in an analogous way. After rz steps we find the field acting on spin (rz * 1) as

tn*!== hn+L * g(K, t,r) (104)

and the actual contribution to the free energy will be -A(K,n").
Thus, a recursion has been found which is actually a random one since the fields

{h;} are random variables [181]. According to the field distribution, 2,..r-1 takes on
the values h+g(K,,2,") and -h+g(K,2,") with pobabilityp and L-p,, respectively.
Consequently, the recursion can be written as a two aalued map in which iterates
stay on the upper flower] branch with probabilityp [t-p] (see Figure 19). The actual
form of the map depends only on the coupling constant K and the field magnitude
h. Although the branches alone are not expanding, the random map exhibits chaotic
motion on an attractor. The natural invariant measure on this attractor is of great
importance since the averaged thermal ftee energy per spia is just the mean value
of. -A(K,,c) taken with the natural measure of variable c on the attractor. The
averaged magnetization per spin and other thermal properties can also be expressed

by means of the natural measure [181].
At certain parameter settings there is a gap between the branches as shown

on Fig. 19. This has the consequence that the attractor is a fractal. One sees

immediately that the whole interval.[ on which the dynamics is defined is mapped
then into two smaller ones with the gap in between, and the images of the small
intervals will have also holes, in any order. In fact, these intervals are exactly the
cylinders in the inaerted map shown on the right of Figure 19. Thus, one concludes
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that the attractor of the random map is nothing but the repeller of the inverted map

[182]. This staternent holds for all values of probability p. The natural measure on
the attractor, however. depends strongly on the choice of p and is not related to the
natural ureasure of the repeller.

The natural measure of the attractor can. of course,l be obtained by iterating the
map .f backward with branching probabilities p and 1 - p and is idependent of the
choice of initial poini. The measure is a multifractal [183, 184]. An efficient way to
obtain its Do spectrurn is to solve the eigenvalue equation (a1) wich takes now the
form

Qn+r(t) _i , r9:t!;'W
?, I f'( f-r(")) l(t-c)oe

( 105)

where / is the map shown in Fig. L9 and pr : L - ptpz: p.
In the special case p : L 12 the natural measure on the attractor is just the o : 0

Gibbs measure of the repeller since all cylinders are equally probable in this case.

This is why the order 0 Gibbs measure is often called ballenced measure. Eq.(105)
becomes then equivalent io (95).

It is interesting to note that free energy fluctuations which are due to different
realizations of the random field in finite chains are closely related to the multifractal
spectrum of the natural measure [184], and similar results can be obtained if mag-
netic field is not present but the coupling constant K is randomly distributed along
the chain [185].

5.3 Irregular scattering
With this last exarnple we leave the field of dissipative phenornena and turn to
Hamiltonian systems. We shall study autonomous systems with unbounded energy
surfaces in phase space. As a consequence of unboundedness, the majority of tra-
jectories will not stay in a finite region. Since forces generally decay with distance,
particles will exhibit a free motion asymptotically. Thus, if chaotic behaviour char-
acterizes such systems at all, it must be transient and must occur in a region where
forces are strong enough.

A typical class of unbounded systems is provided by scattering phenomena which
are very common in physics. One starts particles in an asymptotic region where in-
teraction is weak, lets them approach a scattering center characterized by strong
forces, and asks how particles behave after leaving the scattering center. It is a
relatively recent observation that in systems having extended and nontrivial inter-
action centers, regular scattering is exceptional and irregular or chaotic scattering
is typical, in a very much analogous way as integrability and nonintegrability occur
in bounded Ilamiltonian systems.

What one sees in irregular scattering is that the outgoing trajectories can have
very complicated behaviour even in simple systems. This means that the function
connecting the properties of outgoing particles with that of the incoming ones dis-
plays wild fluctuations which occur on all scales of the incoming parameter. This
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phenornenon has been observed in various branches of physics including
- chemical reactions (classical theory) [18S],
- celestial mechanics [189],
- fluid dynamics [190]
- and potential scattering [191]-[207].
For reviews see [196. 207]. Unfortunately. no experirnental evidence has been re-
ported yet.

To be more specific, here we take the simplest class of systems exhibitingirregular
behaviour, thai of potential scattering in two-dimensions. Particles ulove then in
a fixed potential V(r,,y) ) 0 which falls off sufficiently fast for large values of the
coordinates. The quantity of central interest is the deflection function telling us how
the angle difference between incoming and outgoing directions depends on the impact
parameter at a given incidence angle. It has been found [192]-[203] that although
ihis function has smooth pieces, in certain regions it varies rapidly. Moreover, such
regions contain points where the function is not defined at all, and these points lie
on a fractal set, i.e. the behaviour is repeated on all scales. A comparison with the
time spent in the interaction center shows that the delay time diverges exactly in
points where the deflection function is undefined (Fig. 20).

Thus, one concludes that trajectories can be traqtped in the interaction region.
The initial conditions for such trajectories sit on a fractal. They are therefore directly
not observable but so are trajectories which get close to the trapped ones. It has also
been shown [L92, 193] that trajectories are trapped by bounded hyperbolic perioilic
orbits lying inside the scattering region, along their stable manifolds. Consequently.
there exist s a chaotic repeller (remember: fractality implies transient chaos) which is
practically the set of all unstable cycles, and is responsible for the irregular, chaotic
behaviour. This is consistent also with the observation that the average lifetime
inside the interaction region follows an exponential decay [195].

The properties of the repeller can be studied by methods described earlier. It
is worth definiug a Poincar6 plane, say by taking intersections with the g : 0 axis
and keepinBrtp, ot x,,0 (d: direction of momentump) as variables after eliminating
others by use of energy conservation. Chaotic repellers have been identified by using
the horseshoe construction [196, 205] (Fig. 21) and the PIM triple procedure [203]
(Fig. 22). It is worth noting that due to the reversibility of the motion, stable and
unstable manifolds are obtained by simple reflections in Hamiltonian systems.

When turning to metric properties of irregular scattering, the natural measure
is to be identified. Since one deals with a similar repeller as before, the same
natural measure has to be taken as for dissipative cases [56], i.e. the measure
defined by long lived (in our case trapped) trajectories around the repeller. This
measure has not been constructed numerically, but its characteristics can be derived
also without construction. We can use relations of section 4. Note first that the
Jacobian in Hamiltonian systems is unifornrly 1. Consequently, the free energy
provides a complete characterization of the scaling properties. A comparison of (59)
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Figure 20: Schematic plot of the angle deflection g and the delay time ? versus

the impact parameter 0 for chaotic scJttering. Particles started in the intervals.tt!*)
have at lea-st n collisions inside the scattering center. For ??, -+ € they cover the

fractal on which the singularities in g and f sit

and (80) lead.s to the conclusion that

Df) - Dtr'., {106}

i.e. f,amiltonian repellers are isotrcpic multifractals [56]. The fact that the fractal
dimensions agree follows already &om the symmetry between stable and unstable

manifolds. Pa,rticular values of the Lyapunov exponents, entropies or partial dimen-

sions are obtained via relations (19),(24) 
"nd 

(59), respectiveln provided the free

enerst is known.
The free energy can be specified either via calculating a zeta function [66] or

by measuring the length scales 
"l?) 

i" a generating partition. The latter method
can be simplified observing that the dynamics only slightly distorts intervals when

carrying them along the stable manifolds of the repdler. Therefore, we can do the
following [204]. Take a straight line far away from the repeller. It intersects the

stable manifolds in a fractal set. Specify next interval. 4') from which trajectories
do not leave a neighbourhood D of the repeller before n steps. For rz large enough,

these intervals are practically the intersections of the straight line with the nth
preimage of. D. Since stable manifolds extend smoothly to irifinitn the lengths {')

ll
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Figure 21: Stable and unstable manifolds of a periodic orbit (marked by a dot) in a
poteniial consisting of three identical Gaussian hills concentrated on the vertices of a
regular triangle [205]. The hatched area contains the repeller, double hatched regions
provide a coverage of it. Dashed lines show topological connections of manifolds

of intervals /j") are proportional to those in the generating partition (.[]t). Thus,
one finds the free energy also via the scaling relation

r
i

I!"lu ^, e- PF(9),,

Furthermore, since the motion in phase space and in the Poincar6 map is connected
by a smooth transformation, the same relation holds for lengths I' of intervals .['
defined in the coordinate space [20a]: Take a straight line far away from the in-
teraction region and start trajectories frorn it in a given direction (with constant
velocity). Those which do not leave the interaction region up to n collisions start
out frorn intervals .I'j') which can be found on a time delay plot, too (fig. 20). The
free energy thus can also be obtained from the partition sum built up by the lengths
l'!''. The use of relation (107) provides a powerful rnethod for deducing the scaling
properties of chaotic scattering in two degrees of freedom systems [204, 205].

Finally, two remarks are'in order.
Chaos in bounded dissipative and conservative systems exhibits qualitatively

different behaviour: there is no analogue of an attractor in Hamiltonian cases. This
is not so for repellers. In fact, transient chaos seerls to be much more in common
in dissipative and conservative cases. Furthermore, chaotic horseshoes are always
present locally in bounded Hamiltonian systems. tansient chaos is simpler than
permanent one since in the former there is no feedback from trajectories having left
the repeller; the horseshoe is isolated .

A particularly attractive feature of chaotic scattering is its quantisabiliiy in a
direct way which distinguishes it from dissipative cases. The first steps along this

( 107)
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Figure 222 Chaotic repeller in a scattering problern defined by four identical Gaussian
hills concentrated on the vertices of a square, obtained by means of the PIM triple
method [203]. Compare with a dissipative repeller (e.g., Fig. 4)

line have been taken [195],[208]-l2L2l, and one hopes from this research a better
understanding of scattering processes at least on a semiclassical level.

6 Discussion

There are several further aspects of transient chaos not rnentioned in the rnain text.
We would like briefly to discuss a few of them here.

As for the methodology, the calculation of power spech'a [136, 95] can be useful
for deciding if signals are transiently chaotic or not. Of course, only the random
looking part of signals are to be taken into account. The finite duration is more
essential now than in permanent chaotic cases, but there exist algorithms [213]
which overcome this problem. A broadband spectrum is a definite sign of chaos.
One might speculate about the application of the time d,eloy method [2L4, L22, L36]
for reconstructing the dynamics around repellers from time series. The analogues of
truncated trajectories, as decribed in section 2.2, are to be used in the analysis which
can yield global dimensions or entropies. Also correlation tuncti,ons contain useful
information about the system. A sufficiently long signal around a chaotic repeller
generates an etponentially decaying correlation function which behaves as c'(c ( 1)
in discrete time [57]. The correlation coefficient c is a characteristic of the chaotic
transients and seems to be independent of the thermodynamic quantities introduced
earlier.

The phenomenon of i,ntermittency has not yet been mentioned in transient con-
text. We note first, there are repellers generating intermittent signals, the transient
part of which is characterized by long intervals of approximately periodic behaviour

o
X
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interrupted by chaotic bursts [61]. Another related phenomenon is crfsf s induced
intermittetecy occuring at sudden widening of chaotic attractors [34] induced by an
interior crisis [13]. The signal t]ran exhibits an interrnitteut bursting out of the phase
space region within which the attractor was confined before crisis. In this case a
permanent switching between two different kinds of chaotic behaviour takes place
which is easily accessible experirnentally 175. 80, 81]. The time between bursts into
the new widened region has a characteristic length. Its reciprocal value can be con-
sidered as the escape rate frorn the attractor existing before crisis, and was shown
to follow scaling law (a2) with oitical exponent as given by (a7) or (48) [26, 34]. In
general, we can say that the concept of transient chaos can usefully be applied to
analyzing parts of. chaotic attractors [52, 215].

Julia sets [140], [17], [144]. [216]-[219] provide an important class of repellers not
yet treated. The reason is that Julia sets appear in noni,noeilible two-dimensional
maps, therefore, the analysis of section 4 does not apply to theru. In fact, Julia sets

of analytic complex recursions have very much in common, in certain pararneter
range, with repellers of one-dimensional maps and have been investigated in this
spirit [L44, 2L7,, 2L9]. Note, since Julia sets are typically generated by a random
backward iteration with equal probability for all preirnages, the measure obtained
in this way is not the natural one but rather the balanced (or order 0 Gibbs) measure.

T\ansient chaos plays an essential role in weakly dissipatiae nonlinear systems.
When dissipation is added to conservative systems, stable orbits become attracting
sinks, invariant tori are destroyed and persistent chaotic motion completely disap-
pears. Certain horseshoes, howevet, survive and are responsible for transient chaotic
behaviour 17,7L,10,21", 36]. This phenomenon might be relevant also in celestial
mechanics.

It is worth noting that in the realm of. Ilarniltonfcn systems there are, as well as
scattering problems, other examples connected with transient chaos. Imagine e.g. a
billiard table with a small hole. If the ball can fall through the hole, chaotic motion
is restricted to finite time scales [5, 106]. Another example can be the ionization of
highly excited atoms in microwave fields [220] which is subject of extensive theoret-
ical and experimental investigation. To analyse also such driven cases in a similar
spirit as inegular potential scattering would be desirable.

Let us mention further aspects of practical relevance. One is the influence of
finite precision on measured quantities, like e.g., escape rate [22L). Another is the
effect ol noise on transient behaviour, and its relation to noise induced chaos [113].
A third problem is the influence of the adiabatic tariati,on of the sgstem's pararneters
on the transients 12221. A systematic study of these subjects is stil lacking.

Several open problems are connected with the nonhyperbolicitg of strange re-
pellers. We saw that chaotic repellers are often hyperbolic. This does not mean,
however, that nonhyperbolic cases would be exceptional. The main reasons for non-
hyperbolicity are homoclini.c tangencies (very likely just beyond crisis) or the exis-
tence of marginally stable orbits on the repeller (occuring, e.g., in one-dimensional
maps having a unit slope at the left corner ). In Hamiltonian systems invariant tori
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around repellers can induce marginal cycles.

In nonhyperbolic cases the natural measure of certain boxes is anomalously high,
i.e. nof proporiional to the box size. and/or certain box sizes do not, scale expo-
nentially with the refineurent. Consequenily. nonanalytic behaviour., so-called phase

transitions,, will show up in the therrnodynamic functions or in the 
^q, 

Dq,. Kn spec-

tra. just like for chaotic attractors [223. 30, 33. 149], [224]-[23t]. Nevertheless, what
we learned about hyperbolic repellers remains partially applicable. One expects to
find a range in parameters B or q, the hyperbolic phase, where the contribution of
anornalous boxes is negligible and the system behaves as i,t it were hyperboli"c. The
behaviour in the complementary, nonhyperbolic phase is, however, still unexplored.

Finally, we comment on hi,gher di,mensional (hyperbolic) cases. Besides the qual-
itative picture, also the quaniitative relations of section 4 remain valid, if there is
one positive Lyapunov exponent and the repeller fills the direction of least con-
traction only. In cases with more positive Lyapunov exponents the properties of
the condiiionally invariant measure can be worked out relatively easily [163] as this
measure is smooth along unstable manifolds. A detailed thermodynamic decription
of the natural measure (with fractal properties also in unstable directions) would
require a multivariate thermodynamic potential, a generalization ol G(p,B), in the
construction of which cycle eigenvalues could be of great help [66, 68].

We mentioned already that chaotic transients may be a pervasive feature when
higher dimensional dynamical behaviour is present [26, 34]. This is consistent with
experirnents on fluids [70, 73] and with simulations of some partial differeniial equa-
tions [25] and coupled rnap lattices [35, 232]. The latter shows that the average

lifetime of spatially chaotic behaviour grows rapidly with the systern's size i.e. with
the number of degrees of freedom. Thus, one might speculate about the possibility
that strange repellers can be more relevant in certain hydrodynamic phenomena

than attractors. Whether this is realistic is not yet known , but clearly the study
of cha,otic transients in higher dimensional and spatially extended systems deserves

more attention.
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