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Ising chains characterized by smoothly varying two-body potentials, including a generalized
version of the Kac model, are studied. As a novel aspect we show that one-dimensional maps
associated with such chains in the spirit of the thermodynamical formalism possess fractal deriva-
tives. We discuss how long-range potentials lead to intermittent-like behavior in the associated

one-dimensional map.

The Kac model is a one-dimensional Ising type
chain with exponentially decreasing long-range inter-
action [1]. As an illustrative example of Ising chains
with smooth two-body interactions we study a gener-
alized version of the Kac model defined by the real
valued Hamiltonian

#=—14 So0(li=il (1)
i#
with coupling

J(x)=1@A*+1*)=[i*cospx, O0<|i<l. (2

Here ¢ denotes the phase of the complex interaction
parameter 4, and g, = + 1 stands for the spin variable
at site i. The interaction energy between two sites at
distance x decays exponentially with x but now with
an oscillating amplitude of wavelength 27/¢. This
oscillation mimics the effect of the indirect exchange
interaction between spins mediated by electrons that
leads in realistic models to RKKY type interaction
with an algebraic decay [3]. The generalized Kac
model, (1, 2), has been introduced in [2]. Here we pres-
ent some results concerning the dependence on the
phase ¢ not published before and discuss them in a
broader context.

The basic observation of our approach is that ther-
mal properties of the Kac chains (such as free energy,
magnetization, heat capacity etc.) can be obtained
from a simple functional representation of the transfer
matrix [4]. For the generalized model the transfer ma-
trix % can be represented in the space of holomorfic
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functions of the complex variable z and its conjugate
z* by the operator [2]

L= I G

o=1%1
,80' * 1., 1% * ok
" exp T(z—i—z )|g(ho+Aiz, A¥ o+ A*z¥),

where f is the inverse temperature.

The largest eigenvalue of the transfer operator %
can be obtained by letting it act on a smooth function
and extracting the growth rate. Then the free energy
BF(P) reads as the negative logarithm of the largest
eigenvalue. In the generalized case the free energy de-
pends on the complex interaction parameter A. In
Fig. 1 we have plotted the free energy contours at a
given temperature on the complex |i|<1 disk. As
starting function we choose g(z,z*)=1. Due to the
exponentially fast convergence an error of less than
1072 can be reached at a number n = 14 of iterations
for |1] < 0.9. The complicated structure of the con-
tours can be understood by recalling that the interac-
tion energy between two spins g; and g; , , is propor-
tional to J(x) defined by (2). When |A|<1, the
nearest-neighbor interactions dominate and the free
energy is close to that of an Ising chain with coupling
constant |4 cos(¢). For larger values of 4 longer and
longer interactions play a dominant role and the total
interaction energy appears as a kind of Fourier series
leading to interference-like patterns in the free energy. :_-3-
We have also found that the relatively large values of
the free energy are accompanied by frustration, a typ-
ical effect in disordered systems.

The transfer operator in representation (3) has a
surprisingly similar structure to the so-called general-
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Fig. 1. Equipotential lines on the free energy surface  F (f) at
B=1.2 on the |4| <1 disk in the range —5<fBF(f)<—1.
The free energy was obtained from the growth rate of ¥"1
after n =14 iterations, where operator ¥ is defined by (3).
Level lines fF(f)= —5, —4.5,..., —1 are plotted.

ized Frobenius-Perron (FP) operator [5], which has
been used to characterize scaling properties of one-di-
mensional maps. For a single-humped map f(x) with
inverse branches F,(y), e =0, 1, the generalized Frobe-
nius-Perron operator H is given by

Hy (x) = =Zn liFs’{x)Jﬁlﬁ{ﬂ(x)), “)

where f is a weighting parameter and prime denotes
differentiation. The free energy [5] . (f) of the map
follows from the negative logarithm of the largest ei-
genvalue of H. Despite the striking similarity, the two
operators (3) and (4) cannot be made equivalent by
smooth transformations. This naturally arises the
question of how to find a one-dimensional map with
the same free energy as a given spin chain with two-
body interaction.

To construct such an associated map we have to
find a unique correspondence between the microstates
of the spin chain of length n and the symbolic codes of
length n in the dynamics. Since the Kac chain contains
two-state spins, the associated map should have a
binary encoding. Among several possibilities we re-
strict ourselves to maps topologically similar to the
Bernoulli shift. Identifying the cylinder lengths in the
generating partition of the map with the Boltzmann
factors of the corresponding microstates, we have
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found [2] that the derivatives of the map are given as
F/(y)=exp[—Eq+u.(y). &)

Here E, is an energy constant, and instead of the
binary symbolic codes of the cylinders their real num-
ber representation y=3¢;2”" has been introduced.
The quantities u,(y) ~ e 2.7 -, & J (i), called symbolic in-
teraction functions, represent the interaction energy of
the last spin ¢ added at site n + 1 with the whole chain
of length n at configuration {¢; }|. For the Kac model
this is proportional to 37_, ¢ A’ cos ¢ i. In the thermo-
dynamical limit n—co the symbolic interaction func-
tion has a pronounced self-similar structure (see
Fig. 2) whose fractal properties depend on the phase
@. If ¢ is a rational multiple of =, ie. ¢ =pm/q(p, g
relative primes), the symbolic interaction function
turns out to be a fractal which cannot be characterized
by a single scaling factor. Its hierarchical organization
consists of identical blocks of g different scalings. In
other words, the same scaling factor appears on each
gth level of the hierarchy.

Although the value of the energy constant E, is
irrelevant for the spin chain, it turns out to play a
crucial role in the associated map. Only at sufficiently
large values of E, can a meaningful map be found, and
there is only one value where the map exhibits perma-
nent chaotic behaviour. Above this value the map
possesses a gap and generates transient chaos [6]. Be-
low it, the branches of the map start to overlap and the
dynamics can be defined only in a random sense (see

e.g. [7]).
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Fig. 2. Symbolic interaction function u_(y) ~ & 3 & J (i) with
J defined via (2) plotted at [A|=0.3 and ¢ ==n/4. In the
hierarchical construction of this graph the same scaling fac-
tor appears at each 4th level.
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We have demonstrated that maps associated with
the Kac model via the generalized FP operator (4) are
not smoothly differentiable. Moreover, we believe that
spin chains with smoothly varying two-body poten-
tials always lead to such type of maps. In order to
obtain a smooth map we have to include models with
different types of multispin interactions. The smooth-
ness of the associated map is a special property, and
maps with fractal features will be found in most of the
cases. This seems to be a relation not yet pointed out
in the literature before.

As another new aspect, we stress that the above
construction of associated maps can be applied to any
arbitrary type of Ising chains with two-body interac-
tions even if a simple functional representation of the
transfer operator is not available. Models with inter-
action energy decaying with a polynomial expression
of the distance (e.g. J (x) =1/x% o > 0) lie in this class.
Then a phase transition occurs for o <2 [8]. In our
construction the symbolic interaction function has
then the form u_(y) ~ >F_, ¢/i% For o > 1 and parallel
configuration & =0 or 1 (equilibrium configuration
for f—o0) the length of the leftmost and rightmost
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scaling of the cylinders we expect a sensitive d-depen-
dence for o <2, which would also be reflected by a
nonanalyticity of the free energy.
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