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In this contribution we propose a technique to analyse arbitrary invariant subsets of chaotic
dynamical systems. For this purpose we introduce the constrained Frobenius-Perron operator. We
demonstrate the use of this operator by determining the geometrical multifractal spectrum of
invariant chaotic subsets of one-dimensional maps which are either coexisting side by side indepen-
dently or are embedded in a larger set close to a crisis configuration.

1. Introduction: The Generalised Frobenius-Perron
Operator and Thermodynamical Quantities

The Frobenius-Perron operator [1], H,, of one-di-
mensional deterministic maps x,,,=/(x,) plays an
analogous role to that of the Fokker-Planck operator
or the master operator in noisy systems. It is defined

as
- ; 0(x)
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This operator transforms a function g, (x) during a
discrete time step into a new one g, . ; (x) while con-
serving the sign and the norm of the function. Thus,
the Frobenius-Perron operator describes the evolu-
tion of an initial probability density g,(x) toward its
stationary distribution g*. (The latter is the solution of
the equation H, o* (x) = 0*(x).)

The results of the last decade have shown [2, 3] that
an extension of this operator provides a powerful
method to compute thermodynamic functions, e.g. the
free energy of invariant chaotic sets in one-dimen-
sional maps. The generalised Frobenius- Perron opera-
tor, Hy, is defined [2] via

gﬂ‘f’(x')=

(1)
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where fi can be any real parameter. For f # 1 H does
not preserve the norm and therefore the i functions
can not be considered as probability densities.
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Starting from any arbitrary smooth initial function
. the consecutive use of the generalised operator
yields a sequence of functions:

o Yo ()
YW =Hp o (y)= S

wlro =y | (x)[*

In cases where only a single chaotic attractor or repel-
lor exists, the asymptotic growth rate of these func-
tions,

(&)

A (B) = lim [y, /oI, )

is unique for almost all initial functions and indepen-
dent of 'y, and can be interpreted as the largest eigen-
value of H.

The thermodynamical description of strange invari-
ant sets of dynamical systems is based on the idea that
they can be covered by a hierarchy of nested cylinder
sets [4, 5]. Let the set

O s Wk (5)

contain the lengths of the level-n cylinders in such a
hierarchy, where N (n) denotes the total number of
cylinders at the nth level.

One can take the following formal “partition sum™:

Nin)
3 ST ©)
i=1
This expression defines the firee energy function F () of
the chaotic set [5].
There is a nontrivial relation [2, 6]

Ay (B)=e PFD (7)

connecting the free energy as defined in (6) and the
largest eigenvalue (4) of the generalised Frobenius-
Perron operator.
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II. Coexisting Chaotic Sets

When naivly tyring to apply the above approach to
maps with several coexisting chaotic invariant sets, we
found that the growth rate (4) essentially depends on
y as well as on the particular choice of the initial
function .

In order to give an explanation for this breakdown,
let us consider the following simple situation: let us
suppose that a region (R) contains a chaotic repellor
[7] within the range of attraction of a disjoint chaotic
attractor (A).

First, we study the case f=1 (the conventional
Frobenius- Perron operator). Any normalised smooth
initial function can then be considered as a probability
density function which asymptotically ‘shrinks’ to the
attractor and approaches the density function of the
natural measure. Bedhuse the natural measure is in-
variant, the eigenvalue 4, (1) =y, (y)/y, - ; (v) will be 1
for all y points on the attractor. This, by (7), yields
F (1) =0. However, if y is chosen on the repellor, one
finds that the density asymptotically decays with the
escape rate [7] x, of the repellor: v, (y)/¥,_,(»)
~e *R" vyielding a different free energy value,
F(1) =5y,.

Let us now take the f = 0 case. If the initial function
Yo (x) =1 everywhere then, according to (3), i, (y) sim-
ply gives the number of the order-n preimages of a
point y:

AUES

xlform =y 1

Yolx) _ o
{x1r (x) =y}
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There is a significant asymmetry between the dynam-
ical roles of the two chaotic invariant sets: any point
y of the attractor has preimages both on the attractor
and on the repellor, while points of the repellor do not
have preimages on the attractor. Thus, if y belongs to
the repellor, the growth rate of the functions given by
(8) is governed by the topological entropy of the repel-
lor. If, however, y belongs to the attractor, the number
of its preimages on the attractor and of those on the
repellor increase with different topological entropies.
The resulting growth rate thus will be dominated by
the maximum of the two exponents.

The local growth rates may also change because of
taking different initial functions. If ¥, (x) is chosen to
be 1 on the attractor A and 0 elsewhere, then, at f =0,
(3) reads

b.0)= Yolx)

o=y 1

= b 1,

{xed | S ™ (x) =y}
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i.e., ¥, (y) counts those order-n preimages of y that lie

on the attractor. Therefore, if y is on the attractor,

i, (v) grows exponentially according to the topologi-
cal entropy of the attractor, while if y lies outside the
attractor, ,(y) remains 0 for any y since it has no
preimages in (A), c.f. (9). Along similar lines it is easy
to see that choosing Y, (x) so that it is 1 on the repellor
and 0 elsewhere, always yields a different growth ex-
ponent, the topological entropy of the repellor.
These examples show that in the case of coexisting
disjoint invariant sets the generalised Frobenius- Per-
ron operator method as outlined above does not
provide us with a unique free energy function. But, as
(9) shows, by applying carefully chosen constrains
when selecting the y points and initial functions, it is
possible to exclude or include the contribution of
certain invariant set(s). This has led us to extend the
concept of the Frobenius-Perron operator by involv-
ing the necessary constraints into the operator itself.

II1. The Constrained Frobenius-Perron Operator

We define the generalised Frobenius-Perron opera-
tor constrained to a closed set X (constrained Frobe-
nius- Perron operator) [10] as

¥ (x)

AP (x) = {xexifin=x1 | [ X)I?
0 otherwise.

ifx'eX,
(10)

This operator acts on a space of functions with their
support restricted to X. We do not require X to be
contiguous: it may consist of several intervals as well.

Note that using the operator iteratively n times, the
sum (11)

- Yo(x)
Y ) =HE" Yo () = e
k ° {x|fin){x)=y and Jf"” (x}l'a
Ym=0,1,...,n: f M x)e X}

takes into account only orbits that remain within X
during all the n steps. If there is an invariant subset
inside X, i.e., orbits never escaping this region, then
the points x in the sum above converge to this subset.
This subset is typically a fractal repellor. As n— oo,
(11) reflects the properties of the invariant subset within
X only.

The essential difference between formulas (3) and
(11) is that the former takes into consideration the
reflux of trajectories to X, provided the dynamics al-
lows this, while (11) describes only the contribution
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from the invariant set inside X without any feedback
to other parts of the phase space.

When there are several disjoint invariant sets, X can
be set so as to contain only the one in question. Then
the growth rate of the i, functions yields the first
eigenvalue, ¥ (B), of the operator " for (almost) all
y points within X and initial functions restricted to X.
The free energy FY1(f) describing the dynamics of the
investigated invariant set then follows from (3).

The possible use of the constrained Frobenius- Per-
ron operator is, of course, not restricted to disjoint
invariant sets. The “filter” set X' can be chosen arbi-
trarily, and the corresponding free energy function
will give the dynamical scaling exponents of the in-
variant subset within X only. For example, one can
specify X so as to exclude or include paths with se-
lected symbolic sequences. The Frobenius-Perron op-
erator constrained to this X can then be used to ana-
lyse this artificially pruned dynamics. The invariant
set within such an X (if it exists) is, of course, a part of
the attractor. Therefore, the generalised Frobenius-
Perron operator as defined in (10) is equally applica-
ble to investigate disjoint as well as embedded chaotic
subsets of dynamical systems. In the next section we
demonstrate both cases on an example.

We would like to underline again that (11) makes
possible to specify invariant subsets either geometri-
cally or via the language of symbolic dynamics.

IV. Example: Invariant Subsets Around Crisis
Induced Intermittency

As an example we choose the quadratic map

xn+1=f(xu}$a“x§! {12]

which has been studied intensely in the literature
[8, 9]. We made investigations [10] around the critical
value a, =1.79032749199...., at the top of the main
period-3 window, where a sudden attractor enlarge-
ment [11, 12] takes place.

a) Below the crisis, within the main period-3 window
a€([1.75 a.] of the map (12), there is a three-piece
attractor (A 3). In between the three pieces of the at-
tractor, geometrically separated from it, lies an addi-
tional invariant set, a chaotic repellor (R) with a Can-
tor-set-like structure. These two invariant sets are
responsible for the asymptotic behaviour and the
chaotic transients of the system, respectively.
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When trying to apply the constrained Frobenius-
Perron operator (10) to these invariant sets, it is very
easy to specify the respective constraints either geo-
metrically or by prescribing their symbolic grammar
rules (for technical details see [10]). The correct speci-
fication of the constraints in (11) ensures the fast con-
vergence and the good reliability of the numerical
procedure.

Figure 1(a) shows the free energy functions of the
three-piece attractor and the coexisting repellor we
have obtained at a =1.785, a control parameter value
where the attractor is chaotic. Apparently, the free
energies of these sets are different: they characterise a
relatively strong transient and a weaker asymptotic
chaotic behaviour. We also show in Fig. 1 (b) the Leg-
endre transforms of the free energies of these disjoint
subsets, since they seem tc be particularly useful to
demonstrate the essence of the phenomenon.

The Legendre transforms of fF(f) describes the
geometrical multifractal properties of invariant sets
[4, 5]. In order to stick to the analogy with the entropy
function of phenomenological thermodynamics, we
denote this quantity by S (E). It can also be interpreted
as the topological entropy S of trajectories with local
Lyapunov exponent E. In contrast to other multifrac-
tal spectra [13], this quantity is connected to the
Lebesque measure of the set and is independent of the
natural measure. The graph of S(E) must be a single
humped convex function with its maximum giving the
topological entropy of the set. For attractors, the S (E)
curve touches the diagonal S =E at the value of the
average Lyapunov exponent. For repellors, S(E) is
shifted to the right from the diagonal by an amount of
the escape rate ». The average Lyapunov exponent is,
in general, that value of E where the graph has a unit
slope [5].

Figure 1(b) shows that the repellor is more chaotic
than the coexisting attractor because its S(E) spec-
trum is much further away to the right than that of the
attractor (i.e., it has strictly larger local Lyapunov
exponents) and, also, has a greater maximum (i.e.,
topological entropy).

b) Beyond the crisis (a > a_) there is only a single
one-piece enlarged attractor (A). The free energy of
this attractor can be obtained by using the uncon-
strained Frobenius-Perron operator (2) or, equiva-
lently, by taking the trivial “constraint” X = 4 in the
constrained one (10, 11).

However, it is also possible to apply the same con-
straints that were used in the precritical case to specify
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Fig. 1. The geometrical multifractal spectrum of coexisting chaotic sets at a =1.785 in the precritical regime of the quadratic '
map (12). (a) The free energies of the three-piece attractor (A3) and of the repellor (R) were obtained by the constrained
Frobenius-Perron operator method. The topological entropy K and the fractal dimension D, of these sets are given by the
intersection of their § F (§) functions with the vertical and horizontal axes, respectively. The escape rate x is the value of the
function at f=1. (b) The §(E) functions of the invariant sets obtained by numerical Legendre transformation from the
corresponding free energies.
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Fig. 2. The geometrical multifractal spectrum of chaotic sets at a =1.8 in the postcritical regime. (a) The free energy of the ;
entire attractor (A, solid line) was obtained by the generalised Frobenius-Perron operator method, while the free energies
of the two repellor components R 3 and R, by the constrained Frobenius-Perron operator method. (b) The S (E) function of
the entire attractor (A) describing the asymptotic chaotic dynamics is somewhat above the convex hull (dotted line) of the
two repellors. The latter spectra reflect the short lifetime behaviour of the two intermittent chaotic phases. The typical lifetimes

of these chaotic transients are given by the inverse escape rates of the corresponding repellors. +

invariant subsets. The one which is defined the same
way as the repellor in the precritical case inherits ex-
actly the same topological structure, therefore we keep
denoting this subset by (R). The other one with the
same constraints as the previous three-piece attractor
consists now of those orbits that never escape from the
three bands of the former attractor. This set will be
called hereafter the three-piece repellor (R3) as being

the remnant of the precritical three-piece attractor
(A3).
Both of these invariant subsets are repellors now
with zero Lebesque measure and a Cantor-set-like
structure. They are completely embedded in the attrac-
tor and they represent two sorts of transient chaotic
motion which are present within the asymptotic motion
on the attractor. In fact these embedded repellors are
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responsible for the crisis induced intermittent be-
haviour [12] of the system in the vicinity of the critical
value a,. The dynamics on the whole attractor can
then be considered as intermittent switchings between
these two sorts of chaotic transients.

Figure 2 (a) shows the free energies at a = 1.8, some-
what beyond the crisis situation. The free energy curve
of the enlarged attractor runs below the curves be-
longing to the embedded repellors. This is a conse-
quence of the fact that the largest eigenvalue of the full
Frobenius-Perron operator (2) limitates the eigenval-
ues of the constrained Frobenius-Perron operators
(10). This, according to (7), implies that the free energy
of an attractor gives a lower limit for the free-energies
of its components.

We can take advantage of this property by reversing
this argument: it seems to be worthwhile approaching
the multifractal spectrum of the attractor with those of
its embedded repellor components. The attractor can
have a complex structure with weak couplings which,
as it is the case close to critical situations, often results
in bad convergence properties in (11). On the other
hand, just in such situations do the remnants of the
disjoint precritical invariant sets have simple gram-
mar providing fast computation of their free energies
free of numerical complications. The free energy of the
whole attractor then can be approximated by that of
its embedded nonattractive components. What is
more, such an approach provides us with some infor-
mation on the internal structure of the attractor and
on the characteristics of the asymptotic behaviour; for
example the escape rates from the individual repelling
components determine the characteristic lifetime and
frequency of bursts in the case of crisis induced inter-
mittency.

By considering the S (E) functions corresponding to
the free energies on Figure 2 (b), it is conspicuous that
the spectrum characterising the whole attractor runs
indeed somewhat above the common convex envelope
of the curves belonging to the two repellors. This fact
shows convincingly that the multifractal spectra of the
embedded repellor components can be used as a sort
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of frame, or backbone, to approach the spectrum of
the whole attractor [14].

V. Remarks and Outlook

In the above example we showed that by applying
the Frobenius-Perron operator with suitably chosen
constraints one can get rid of the initial function- and
y-dependence, and can approach the multifractal
spectrum of a large invariant set with that of its com-
ponents. This approach can be improved by using
more repellor components. Thus, the constrained
Frobenius-Perron operator provides a useful tool for
the investigation of multitransient chaos [15].

We would like to mention that the fact that the S (E)
functions of the disjoint components do not lap over
is a consequence of the specific map, and this is not
necessarily true for other systems. Specially, if the sys-
tem has certain symmetries, like in cases of symmetry
recovering attractor mergings [9], different invariant
sets may have identical free energy functions.

It seems that the idea of introducing constraints
into the master operator of dynamical systems to ob-
tain the thermodynamic potential of chaotic subsets
can be extended to higher dimensional maps as well.
In order to that, appropriate generalisations should be
made in the definition of thermodynamical quantities
and of operators like, e.g., the one proposed in [16].
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