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General properties of the dynamic renormalization group transformation are studied by 
investigating the multicomponent relaxational model both with conserved and non- 
conserved order parameter in the large n limit. Exact expressions are given for the 
transformation of an infinite number of parameters. The strong dependence of all the 
dynamic quantities on whether the order parameter is conserved or not is illustrated. 
Critical points of higher order inherent in the model are also discussed. Explicit 
expressions for the action near the stable fixed points are derived. Different formulations 
of the dynamic renormalization group are compared and the conditions under which 
they are equivalent are found. 

I. Introduction 

The large-n limit of the Landau-Wilson model (n 
being the number of components of the order param- 
eter) has proved to be an excellent tool for studying 
how the renormalization group transformation works 
in describing static critical behaviour [1-6]. Similarly 
its simplest time-dependent generalization, the large- 
n system with purely relaxational dynamics is expect- 
ed to provide a convenient model for testing and 
expanding various general ideas related to the dy- 
namic renormalisation group (DRG). 
Although the dynamics of multicomponent systems 
has been discussed by several authors (see [7] and 
references therein) and the dynamic critical exponent 
has been determined up to order 1/n in the re- 
laxational model [8, 9], an analysis using a Wilson 
type dynamic renormalisation group transformation 
in the large-n limit with successive elimination of 
short wavelength fluctuations has been carried out 
only recently [10, 11]. The parameter space on which 
the D R G  transformation acts has played a central 
role in the procedure and turned out to be much 
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more complicated in the large-n limit than in the 
small e (e - 4 - d) case. 
The aim of the present paper is to generalize these 
latter investigations in different ways. First we in- 
clude into the discussion the case of the conserved 
order parameter as well. In this way it is demon- 
strated that all the dynamic parameters depend on 
whether the order parameter is conserved or not. The 
model is rich enough to exhibit critical points of 
higher order the properties of which are also dis- 
cussed. 

An other aspect of this work is the comparison of 
different ways of the D R G  calculations, namely the 
perturbative procedures carried out on the equation 
of motion [12-14] and alternatively in the path prob- 
ability distribution expressed by the help of an action 
1-15-20] and furthermore a saddle-point method in 
the latter formalism [10]. 
The couplings in the action which are local in space 
and time transform among themselves. The saddle- 
point method which has been used also in [10] 
enables us to follow the transformation of these 
couplings in a global way. On the other hand param- 
eters related to the non-local couplings can be treated 
only by one of the perturbative methods. 
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The main results are presented below along with the 
outline of the paper. 
After a short discussion of the model and of the 
DRG procedure in the path probability formalism 
(Sect. II) we turn to the discussion of the non-per- 
turbative treatment (saddle-point method) in Sect. III. 
The exact transformation is given for the local coupl- 
ings. Even this restricted part of the parameter space 
contains an infinite number of static and dynamic 
parameters. Besides the ordinary critical point, the 
higher order critical points are also investigated. In 
each case the deviation of the action from its fixed 
point at T c turns out to be a product of the non-linear 
scaling field with the largest exponent and of the 
corresponding eigenvector of the linearised transfor- 
mation provided we are close to the fixed point. 
These scaling fields are purely static ones but the 
eigenvectors bear the marks of dynamics and depend 
on whether the order parameter is conserved or 
not. 
By means of the perturbative method of Sect. IV the 
transformations of wavenumber- and frequency-de- 
pendent couplings are given. The transformed coupl- 
ings are not all independent since fluctuation-dissi- 
pation theorems relate them. Two different repre- 
sentations of the parameters are presented; some of 
the details are relegated to Appendix A. It will be 
demonstrated that at higher order critical points, at 
T~, the couplings originally local in space and time 
remain local after the transformation, too. 
Comparing the DRG calculations carried out on the 
path probability and on the equation of motion it is 
found that they are equivalent only if higher order 
cumulants of the random coefficients generated in the 
equation of motion are also taken into consideration 
(Sect. V). This connection yields an interpretation of 
all the parameters in the action as different cu- 
mulants of the random vertices in the equation of 
motion. In the symmetry breaking phase the parame- 
ter space has to be further enlarged as it is de- 
monstrated in Appendix B. 

II. The Model and the DRG Transformation 
in the Path Probability Formalism 

We consider a d-dimensional system of volume V the 
static behaviour of which is described by the Hamil- 
tonian 1-2, 3] 

= d + u ( @ ) ) ,  (2.1) 

where 

(VqS)2:½ ~ (V~b,)2, q~2:½ ~ q~2. (2.2) 
j= l .  j = l  

qS= {~bjlj= 1,.. . ,  n} denotes the n-component order 
parameter with wave number cut-off A. The function 
U is represented by a Taylor series as 

oo 

U(q~2) =m__~l= /'/2 m,2m2 (2 q52) m, (2.3) 

where the coefficients uz,,, 2 are of order n 1-m to 
ensure the existence of the limit n--+ oo. 
The time variation of the order parameter is gov- 
erned by the following Langevin type equations 

6Yg 
6j = - L ~ + ~j, j = 1, 2, ..., n. (2.4) 

is assumed to be a random field with a Gaussian 
distribution and white spectrum. The bare coefficient 
L is constant for a non-conserved order parameter 
and is proportional to the Laplacian for a conserved 
one (models A and B in [7, 8]): 
L = F ( i V )  c, c = 0  or 2. (2.5) 

The stochastic process (2.4) can be described equiva- 
lently by the path probability functional P{~b} which 
reads 

j=1 

where ~ stands for the response field [21]. d{q~, ~b} 
denotes the action [16-19]. In our case 

d{~,~} =SdtS ddx i (-~)2L~)j÷i4)2 (()j-aLA dfj) 
j=1 

+ i ~)j Ld~j U(a)(~b 2) ÷ 1/2 rK(e) u(~(~2)) (2.6) 

with 
A 

K ( c ) = K a  S q~+d-, dq, (2.7) 
0 

Kd = 21 - a re- d/2/F(d/2). (2.8) 

Furthermore we introduced above the following no- 
tation 

U(° (q52 ) =- d ~ u (~z)/d(dp2) i. (2.9) 

The last term of d stems from the functional Ja- 
cobian 1-15, 18, 193 in the large-n limit. 
The D R G  transformation R b is defined on the weight 
functional exp sd by integrating over shells in the 
space of wave numbers [17, 20]. The new action is 
determined by the equation 

exp d'{6', 4'} 

=S l~ dOj, k,~d4j, k,o~ exp sd{6, qS} (2.10) 
j , A / b < k < A ,  ro 
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with the rescaled quantities 

x,=b-lx ,  t'=b-zt, 

qS'(x', t ' )=b  -1 +,/2 +a/2 qS(x, t), 

6'(x', t ' )= b-Y qS(x, t). (2.11) 

In (2.10) q~j,k,~ and q~j,k,~ denote the Fourier com- 
ponents of the response field and of the order param- 
eter respectively: 

4j(x, t)= V -1/2 ~ ~bj, k,o,e i(k~-°'°, (2.12) 
k,(.O 

and similarly for ~a(x, t). Here 

~dco  (2.13) 2-=Z 
k ,o )  k < A  - -oo  

This procedure shows a strong analogy to the static 
RG [22, 2]. 

III. Non-Perturbative Treatment (Saddle-Point Method) 

The Parameter Space 

Before carrying out the calculation we outline the 
structure of the parameter space. The form of the 
action we have started with, (2.6), turns out to be not 
sufficiently general i.e. after the RG transformation 
new terms arise. It can be proved that the parameters 
of the functional 

ag{(a,(O}=Sdtyddx {--(ojL(oj 
J 

+ i~)j(Oj-aLA qSj)} + Y(~b 2, (p)], (3.1) 

(p=i ~ ()jLdpj+(n/2)FK(c) (3.2) 
j = l  

span the whole parameter space involved (at least 
above T~) provided we treat only local couplings in 
space and time*. The latter restriction is neces- 
sary in order that the saddle-point method be applic- 
able. Y is represented by a double Taylor series 

Y(~bz, cp)= ~ ~, UE,,,,,2t(p'(2~b2) ~- '  (3.3) 
m = l  l < l < m  

w i t h  u2m, 2t=(9(n l-m) for all/'s. Initially 

* These couplings transform among themselves in the large n 
limit. Some of the couplings treated here are related to frequency 
dependent ones as will be seen in the next Section 

Y(q52, cp) = ¢p U(a)(q52) (3.4) 

as it follows from (2.6). For l=  1 the couplings in (3.3) 
agree with those in (2.3). 
For the sake of convenience we introduce the no- 
tation for the derivatives of Y as follows 

y~, j(q~ 2, q0)= 0 i+j Y(q52, ~o)/~3(q52) i 0p j. (3.5) 

Y(q52,0) can be proved to be a constant after the 
transformation which will not be regarded as a 
parameter*. Thus YO, l(q52, (p) will be of importance 
since it specifies all the parameters besides a and F. 
Therefore we can specify the parameter space as 

/* = (a, F, Yo, ~(~ b2, (P)) 

o r  

/~ = (a, 1", {u2,,,2,lm>=l>= 1}). (3.6) 

The static parameters given by (2.1) and (2.3) 

#st = (a, {u2m, 21m=> 1}) (3.6a) 

form of course an invariant subset in the parameter 
space. Finally we note the relationship 

Y~, ~(q52, 0) = U (i+ ~)(~b2). (3.7) 

The Transformation and Fixed Points 

The D R G  transformation can be performed exactly 
in the large-n limit. The calculation goes on the same 
lines as in [10] where only the case of a non-con- 
served order parameter was treated, therefore we 
mention only the main steps of it. The integral in 
(2.10) over ~j,k,~ is straightforward since d is quad- 
ratic in this variable. In carrying out the integral over 
qSk,~'s the saddle-point method turns out to be applic- 
able. 
For the first two parameters we obtain 

a'=b-~a, F'=b-2+~-C+ZF (3.8) 

indicating that a finite fixed point can be achieved 
only if 

~]=0, z = 2 + c  (3.9) 

which are well-known results of previous works [2, 8, 
9]. 
The transformation of the function Yo, l(q 52, qo) cou- 
ples to that of Yl,o(q52, ~o). For d > 2  it is found, using 
the definition (2.9), that 

* This is why the sum over 1 in (3.3) starts with l=  1 
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]7'  b 2 o,~(¢2, ~0)= U°)(bZ-aQ(¢ 2, qo)+N~), (3.10) 

y'  b 4-a 1,0(¢2, @) = U(2)(b2-dQ(¢2,~p)+N~)R(¢2, cp), 
(3.11) 

where ¢2 and qo denote the rescaled fields, further- 
more 

> 
Q(¢2, (p)=¢2_Nc+(n/2) ~ (q~/2S-1 _q-2) ,  (3.12) 

q 

R(q5 2, ~o)= q~ - (n/2) S (q3c/Z(q2 + y~, 1(¢2, (p)) S-1 _qC) 

q (3.13) 
with 

S-{qC(q2+ y~,,(¢2, tp))2-2Y~,o(¢2,~o)} t/2. (3.14) 

The constant N c is given by 

N~ = (n/2) K d A d- 2/(d - 2) (3.15) 

and 

A b  

i ==-Ka ~ dqq a-l" (3.16) 
q A 

Since a and F do not transform they have been set 
equal to unity. 
In the special case of c = 0  Eq. (3.10)-(3.14) go over to 
the corresponding ones in [10]*. 
An important feature of Eq. (3.10)-(3.15) is that at (p 
= 0  they describe the transformation of the static 
parameters. In fact for Y~,1(¢ 2, O)=t ' (¢  2) we recover 
the expression first obtained by Ma (see (4, 35) in 
[23). This is a consequence of the fact that 
Y~,o(¢2,0)-0 as it follows from (3.11). 
The right hand sides of (3.10) and (3.11) can be 
expanded as 

1/;,' !) o,~(@,~0)=b ~ ~ (1/j V~+~(NO 
j=o 

• b(2-a)J[Q(¢ 2, q))]J, (3.17) 

y ,  t ~  2 ~,o,~" , q°) =bS-e  ~ (l/j!) u(J+2)(Nc) 
j - O  

• b(2-d)J [Q(¢ 2, ~o)]J R(¢  2, cp). (3.18) 

The fixed point is generated by taking the limit 
b-+ oQ. It can be seen from these equations that a 
necessary condition for the existence of a finite fixed 
point is 

* Note that there are differences in the notations: t(~z), v(052), 
y(SZ, q~) and X(~2,~o) of [10] are here Um(4~z), U(2)(052), 
Y~;, 1(05 2, ~o) and 2 Y;, o(q52, ~o) respectively. Furthermore it can easily 
be seen that b2-dQ + N~= b 2-e 02+ ~, where t~ is defined by (21) of 
[10] for c=O 

U(1)(Nc) = 0  (3.19) 

which specifies the critical surface in the parameter 
space. This is, of course, a well-known condition from 
statics [23. 
For d > 4 the Gaussian fixed point is reached 

Yff(¢2, ~o)-0. 

Here and the following the fixed point values of the 
quantities are marked by an asterisk. 
Below four dimensions let us discuss first the case 
when u(E)(Nc)>0. Then it follows from (3.17) and 
(3.18) that Y0,1 and Y~,o can approach finite fixed 
point expressions only if Q and R tend to zero in the 
limit b - * ~ .  Using (3.12) and (3.13) the fixed func- 
tions Y0*,t and Y~ 0 are given by the coupled integral 
equations: 

02 =Nc- (n /2 )K  d ~ (qC/2(S*)-I _q-2)qe-1 dq, (3.20) 
A 

cp=(n/2) K a ~ (q3c/e(q2 + E* o, 1(¢2~o)) 
A 

. ( S , ) -  1 _q~) qa-1 dq (3.21) 

with 

S*-{q~(q2+ y~,~(42,~o))2-2Y~,o(¢e, cp)}l/z. (3.22) 

The fixed point expression of the action is given by 
the general relationship 

q~ 

y(¢2, (p)= S Yo, 1(¢ 2, q~) do. (3.23) 
0 

The transformation of the function Yo, 1(¢ 2, (#) speci- 
fies, at least in principle, the transformations and fixed 
point values of all the parameters u2,,,2> It is more 
convenient however to consider the different deri- 
vatives of Y taken at ¢2 = N  c and ~o=0 as an other set 
of parameters. The fixed point values of some of these 
quantities are listed below: 

(1/2) Y~ l(Nc, 0)= AS-a(4 -d) (nKa)-  1, 

(1/2) Y~2(N~, O) 
= A 2 -¢-d (4 - d ) 2  (6 + c - d ) -  i (n K d ) -  1, 

(1/8) Yz*, I(N~, 0) 

= A6- 2d(4 - d )  3 (6 - d ) -  1 (nKd)- 2, 

(1/4) Y~2(N~, O) 

=A4_c_2d (4-d)3  ~ 4 ( 4 -  d) 3 } 
(nKd) 2 [ ( 6 + c - ~ - d )  8 + c - d  ' 

(1/6) go*, 3(No, o) 
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=A2_2c_2a 2(4-d)  3 )" 2 (4-d)  2 
(nKa) 2 [ ( 6 + c - d ) 2 ( 6  - d )  

3(4-d)  1 } (3.24) 
( 8 + c - d ) ( 6 + c - d )  ~ l O + 2 c - d  ' 

Yj*o(Nc, 0) = 0, j =  1,2, .... 

These formulae illustrate the strong dependence of 
the dynamic quantities on whether the order parame- 
ter is conserved or not. 

Higher Order Critical Points 

obtained by taking first the limit b ~  oo. and sub- 
sequently the limit n ~  oo. Such a procedure could 
account for the features of the exact solution of the 
model for equilibrium properties [25] according to 
which there exists a tricritical point in three dimen- 
sions without, however, logarithmic corrections to 
the mean field behaviour. This possibility is also in 
accordance with the results by Stephen et al. [30], 
who pointed out that the critical region (in which the 
logarithmic corrections arise) shrinks to zero when 
n--+ oo in three dimensions at the tricritical point. 
It is expected that similar situation occurs in case of 
the critical point of o "th order at d, = 2 ~/(a - 1). 

Under special conditions we can arrive at fixed 
points describing higher order critical points (see for a 
discussion of higher order critical points [23]). Name- 
ly for 

U(J)(N~)=O, 1 < j < a  

and 

U(~)(Nc) > 0, o-= 3, 4 . . . .  (3.25) 

and for d > 2 a / ( ¢ - l )  the recursion relations (3.17), 
(3.18) lead to the Gaussian fixed point, which in this 
case specifies a critical point of order o. (The or- 
dinary critical point for d >4 would corresponds to o- 
=2). Note that Q(N~,O)=R(Nc, O)=O, which ensures 
that for l < j < o -  U'(J)(N¢) - Y]_ I, I (Nc, 0) are also zero 
if (3.25) is fulfilled. 
Let us discuss first the tricritical point, many of the 
static properties of which have been studied by sever- 
al authors for large n [4, 5, 24-29]. The recursion 
relations (3.17) and (3.18) do not lead to a finite fixed 
point below three dimensions corresponding to a 
tricritical point*. It is in accordance with the results 
of Emery [25] who has found that for d<3  the 
critical line terminates at a critical end point and a 
first order phase transition takes place when decreas- 
ing U(2)(Nc) already for small positive values of it. 
There is no finite fixed point of the recursions (3.17) 
and (3.18) at d = 3  either.* This feature can be con- 
trasted with the behaviour of the recursions at d = 4  
where the Gaussian fixed point is reached in the limit 
b-+ oo. The reason behind this is that Q and R have 
contributions proportional to In b at d = 4, while they 
develop no logarithmic singularities at d = 3  even 
when the condition of tricriticality (U(2)(N¢)=0) is 
fulfilled. It is expected, however, that such logarithms 
show up when calculating to order 1/n. Then a fixed 
point describing tricritical behaviour at d = 3 may be 

* These statements hold also, if we consider the recursion relations 
at cp = 0, which corresponds to statics 

The Large-b Behaviour of the Transformation 

The properties of the transformation near the fixed 
points can be deduced from (3.10), (3.11). It is found 
that for 2 < d < 4 at T~ in leading order in b 

Y;, l(e 2, e ) -  go~ 1(4 2, ¢o) 
= be- ~ g a(Yd~ 1 Y~ o)/a (P, (3.26) 

Y;, o (~b 2, (p)- Y~0(¢ 2, cp) 

= b a- 4 g (?(y~,, Yi*, o)/0(¢2), (3.27) 

where 

g = [I11", 1(No, 0)] -~ - [I11, ~(Ne, 0)] - 1 (3.28) 

and Y~ 1(No, 0) is given by (3.24). Then it follows from 
(3.23) and (3.26) that for large b 

y,(q~2, cp)- y ,  ((~2, ~0) 

=ba-4g ro*, 1 (~b 2, ¢o) r~*. o(¢ 2, ¢o). (3.29) 

It should be emphasized that the expressions (3.26), 
(3.27) and (3.29) are not restricted to such starting 
points in the parameter space which lie near the fixed 
point. As a matter of fact due to the special form of 
the initial action (2.6) the starting point could not 
generally be choosen in the vicinity of the fixed 
point. 
It can be shown that g is a non-linear scaling field*, 
which transforms at T~ as g'=g b a-4. It is interesting 
to point out t h a t  Yo*i(• 2, (p) Yt*o(~  2, (p) is an eigen- 
operator of the linearised transformation around the 
non-trivial fixed point. 

* The scaling field g is of purely static character (i.e. it is a 
combination of static parameters only, as can be seen from (3.28) 
and (3.7), and agrees with what has been determined in the RG 
analysis of the statics of the model [4, 5]. The complete hierarchy 
of the scaling fields including the dynamic ones will be given in a 
subsequent paper [31] 
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Similarly we can investigate the transformation in the 
neighbourhood of the trivial fixed point in the case of 
higher order critical points. We obtain for a ath order 
critical point for large b 

y,((~2, @) : b2+(2 -d)(a- 1)(1/(Or _ 1)!) 

• U(¢)(Nc)(~b 2 - N y  -1 ~p (3.30) 

provided d is larger than de. 
It turns out that the non-linear scaling field with the 
largest exponent in this case is proportional to 
U(¢)(N~) at T~ (and the exponent is 2+ (2 -d ) (~ r -1 ) ) .  
Moreover (~b2-Nc)¢-lcp is just the corresponding 
eigenvector of the linearised transformation. 
The fact that the deviation of the action from its fixed 
point expression for large b at T~ is the product of the 
non-linear scaling field with the largest exponent and 
the corresponding eigenvector of the linearised trans- 
formation is expected to be valid for all cases when 
there is only one non-linear scaling field at T¢ which 
belongs to the largest exponent• 

IV. Perturbative Method 
in the Path Probability Formalism 

The multiple integral (2.10) can be evaluated per- 
turbationally as well [17, 20]. In order to do this we 
decompose the action into a harmonic part and the 
interaction 

P. Sz6pfalusy and T. T61: Renormalization Group Analysis 

dr{~), ~)}=S dt y ddx ~ {u4,2i~jL~)j2~ )2 
j=l 

+u4,2FK(c) q~2 +.. .}.  (4.1) 

The only non-vanishing averages over the harmonic 
part are given in terms of Fourier components (2.12) 
as 

- i FkC(4)j ,k ,  ~, ~j ,  -k ,  - ,o) o ~ G(°)( k, co) 
= FkC(-ie)+ FkC(ake +u2,2)) -1, (4.2) 

( O j, k,~, ~ j, -~, - ~ 5  o ~ C(°~( k, co) 

= (2/co) Im G(°)(k, o3), (4.3) 

where G (°) denotes the free response function and C (°) 
is the corresponding correlation function. 
To represent the contributions to the integral 

S H dJpj, k,~dOj, k,,oexpd o ~ d]/l! (4.4) 
j ,A/b<k<A,w l=0 

it is convenient to introduce diagrams. In the large-n 
limit only graphs with a maximal number of closed 
loops survive because every loop involves a factor n. 
The topological structure of these diagrams corre- 
spond to that of the static ones [3]. Figure 1 shows 
some of the diagrams coming from the l=  3 term of 
(4.4). 
Looking at the graphs one concludes that only those 
vertices give contributions in which both legs belong- 

G ° .  • ° O  • ° • ° 
iU 6.2 

© © 

© 

V 
iU4.2 

Fig. 1. Some diagrams in the DRG calculation of the large-n limit. Notations: 

V 
:U4.2 

C(°)(k, c~), G(°)(k, co). External legs: 
qbzk, o , with k<A/b. Internal lines carry momenta between A/b and A 
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ing to one endpoint carry either large or small mo- 
menta. If in addition the k- and co-dependent parts of 
the diagrams are not considered the net wavenumber 
and frequency transfers of the potential lines are zero. 
As a matter  of fact, in the language of diagrams this 
argument justifies the approximations done when 
performing the D R G  transformation by the non- 
perturbative method (see Eqs. (11) and (13) in [10]). 
The steps of the calculation can be summerised in the 
following• Infinite subsets of graphs are summed up 
by using self consistently dressed correlation and 
response functions and an effective interaction, con- 
taining the series of bubble graphs*. After introduc- 
ing new scales corresponding to (2.11), choosing )? as 
~ / 2 - 1 -  d/2 in order to ensure a finite coefficient of 
the term i q~'~' and making use of the linked cluster 
theorem we arrive at a new action containing coupl- 
ings non-local in space and time. Let 

U2m, 2/(kl, "'" km- 1 ; COl, "'" com 1) (4.5) 

denote the coupling described by a graph with 1 
external wavy lines and 2 m -  1 external straight lines. 
We can write 

]A=(a, I', {U2m, 21(kl, ... kin_l; col, ... (J)m-t) jm>l> 1}) 
(4.6) 

indicating that all parameters of the functions U2rn, 2/ 

(for instance the Taylor coefficients) are to be consid- 
ered as elements of the parameter  space. 
It is easy to see that graphs containing K(c) (the 
contribution of the Jacobian) do not determine new 
independent parameters**. In the previous treatment 
this has been reflected in that, that always the com- 
bination ~o, (3.2), has been involved. 
The lack of terms like q~,2, q~, 3 etc. in s¢' has the 
important  consequence that the noise in the equation 
of motion remains Gaussian (see for the form of the 
action in case of non-Gaussian noise [19]). This is 
one of the simplifying features of the dynamics in the 
large-n limit. 
The results for the first few couplings U2m ' 2/ are given 
in Appendix A. Here, instead, we introduce an other 
representation of the parameters in order to show the 
connection between the results of the present and 
previous Sections more directly. Let us define: 

U2m, 2/=U2m, 2/-~" ~ bl2(m+d),21 j ] j = l  (-}-l~--I](2Nc)J. (4.7) 

* The bubbIe graphs here consist of one response and one cor- 
relation function 
** This feature should be compared with the role of the Jacobian in 
other types of perturbation expansion [18, 19] 

It is worth while mentioning that the linear com- 
bination (4,7) has a well-defined meaning in the lan- 
guage of the usual perturbation expansion*. U2m ,2/ 
is a sum of vertices of the same type (i.e. with 2m 
external lines, among them 1 response field lines) 
where the jth term of the series comes from u2(m+;) ' 2l 
but j pair of the order parameter  lines are closed to 
form fully dressed Hartree loops of the correlation 
function (whose contribution gives the average value 
of q52) evaluated at T~. The correlation function in 
this formalism is given by (4.2), (4.3) but with U2, 2 
instead of 122, 2, Since Uz, z=U(1)(Nc) it is zero at T~ 
(see (3.19)), and the contribution of a Hartree loop 
turns out to be simply the constant N c, (3.15), which 
has frequently occured in our calculation previously. 
The self-loop of the response function, on the other 
hand, cancels the contribution of the Jacobian as 
required by causality [-18, 19]. In other words this 
means that the average of ~0 vanishes and this is why 
a summation over the second indices of u is not 
involved in (4.7). Figure 2 shows as an example how 
U¢, 2 can be represented by diagrams. New vertices 
similar in spirit to those defined above have been 
used in calculating static and dynamic critical in- 
dices at critical points of higher order just below the 
critical dimensionality do (see [32, 33]). 
When performing the D R G  transformation we start 
with the new parameters U2m,21 and find that the 
corresponding transformed quantities become k- and 
co-dependent, U;,,,, 2/(kl . . . .  k,,_ 1 ; col, .., co~- 0, where 
k 1 . . . .  and co,,.. ,  denote the rescaled wavenumbers 
and frequencies, respectively. 
For U~, 2 (k, co) one obtains 

U~, 2(k, co)= 1 + b4-~(n/2) V(2)(I~ ~)) Ib~2)(k, co)' (4.8) 

where U (2) is defined by (2.9) and I~l)=b2-dQ(N~,O) 
+ N  c with Q as given by (3.12) and 

= ~ ( q 2 + U ; , 2 ) - l ( ( k - q ) 2 + U ; , 2 ) - i  
A <q <Ab, A <lk-q] <Ab 

qC(q2+U;,2)+(k-q)~((k-q)2+U£,2)  
- i co + qC(q2 + U£,2) + (k-q)~ ( (k-q)2  + U;,2) 
d d q 

• (2 rO d. 
(4.9) 

Here a and F have been set equal to unity and U£,2 
can easily be deduced from (3.10) as 

** As contrasted to the RG calculation, here the momenta of the 
internal lines are not restricted to a shell but run from zero to the 
cut-off 
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0 0 O 0  
+ ) - - i u - : {  + + ..- 

0 0 
Fig. 2. Graphic representation of the parameter U< 2. The loops denote the average value of ~b 2 a t  T~ i.e. N~ 

U2, 2 = b 2 Uo)(I~I)). (4.10) 

The meaning of the quantities Ib (1) and Ib ~2) can be 
given as follows. I~)-b2-dNc and b'*-aI~ 2) represent 
the contributions of the Hartree loop and the bubble 
graph respectively, in which the integration over wave- 
numbers runs in the interval (A/b, A). At T~ U~, 2 =0 
and I~l)= N~. 
It is of interest that U~, 4 can be expressed by the 
formula 

U~, 4(k, co) = ( -  2/co) Im U~,i(k, co) (4.11) 

representing a fluctuation-dissipation theorem. The 
transformation of U6,2(kl, k2; c01,co2) is given in 
Appendix A. 
Finally we mention that the general relationship 

Uzm ' 2t(0, 0,...  ; 0, 0, " " ) =  m! 2 m-t 

h o l d s  (both for the starting and for the transformed 
ctuantities), and establishes a connection between the 
parameters of the present and previous Sections. This 
set of parameters is very convenient in describing the 
linear and non-linear scaling fields [31]. An example 
is given by (3.28). 
Provided the initial parameters lie on the critical 
surface (g(1)(Nc)=O) and U(2)(Nc) is positive the fixed 
function U* z(k, co) = [nI~)*(k, co)]- 1 is obtained, 4, 
where of course, I~  )* should be taken at the fixed 
point value of Ue, e which is zero. On the other hand 
for u(Z)(Nc)=0 (tricritical point) and for d > 4  the 
trivial fixed function U~e-=0 is obtained. The fixed 
point expression of U* 4(k, co) follows from (4.11). 
For the deviation from the non-trivial fixed point we 
find for large b and T~ 

U~,2(k, co)-U*,2(k, oJ)=gba-¢2[U*2(k, co)] 2 (4.12) 

indicating that all parameters of U~, z have the same 
large-b behaviour when approaching the fixed point, 
and each one is proportional to the scaling field g 
given by (3.28). For every AU;,n,21(k>... ; col,...) 
similar relation is valid as (4.12). 

An other question of particular interest is how dif- 
ferent initial actions modify the transformation. This 
can be studied by adding various perturbative terms 
to (4.1). For example starting with an additional 
interaction u<4 q~2 we find instead of (4.11) 

U•, 4(k, co) = ( -  2/co) Im U4, i(k, co) 
+ba-6-C4u4,41U~,2(k, co)12/[U(2)(I(bl))] 2, (4.13) 

which for large b yields the same transformation as if 
we had started with zero value of u¢,4. This feature 
turns out to be characteristic for all other 
U~m, 21(kl . . . .  ; col .. . .  ) (re, l>2) too which can be 
traced back to the fact that there is only one irrelevant 
scaling field which belongs to the largest exponent, 
that is to d - 4 .  It is worth mentioning that this is the 
reason of obtaining in the previous Section the same 
large-b behaviour of the transformation as if we had 
started with a general Y(~b 2, ~o). 
Let us shortly discuss the structure of the parameter 
space, and compare the methods of Sects. III and IV. 
Quantities like the expansion coefficients of the k- 
and co-dependence of a coupling of given order and 
the set {Uzm,2~(0, 0 . . . .  ,0, 0, ...)} define two subspaces 
in the parameter space. The non-perturbative treat- 
ment enables us to give the transformation of the 
parameters in the latter subspace by studying their 
generating function, Yo, 1. The perturbative calcula- 
tion on the other hand yields the transformation of 
the other subspace in a compact way. Some of the 
parameters in the two subspaces are related by fluc- 
tuation dissipation theorems. 
Finally a remark is in order on the bare coupling 
coefficient determined by the so-called matching con- 
dition [34]. In the language of the renormalisation 
group a general formulation can be given for the 
matching condition. It corresponds to a special 
choice of the initial parameters which set the scaling 
field g (i.e. the irrelevant scaling field with the largest 
exponent) equal to zero. This procedure kills off the 
transients in the parameter space which would trans- 
form as b -~ (~-  4 -  d) for large b, that is the transients 
which become slow near four dimensions. The match- 
ing condition is very simple in terms of the new 
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parameter U4, 2 since the requirement g = 0  can be 
fulfilled only if 

U4,2 = U* 2(0, O) 

as can be seen from (3.28). In the special case when 
we start with the usual 4)4 model e.g. with 

a(4) 2) =/g2, 2 4)2 ..~//4, 2 (4)2) 2 (4.14) 

we have u~, 2 = U4, 2, and thus the matching condition 
requires a special bare coupling constant u4, 2c as 

u4, 2c= U*,2(0, 0). 

It is worth while comparing u4, 2c with the fixed point 
expression of u4,2(0,0) (see (A.2)) for small e. We 
obtain that they agree up to order ea in accordance 
with the results of [35], but they differ already in a 
term of order e3. 
Closing this Section let us turn to a short discussion 
of the case of higher order critical points. The cor- 
responding recursions can be read off from the gener- 
al ones (for example (4.8), (A.5)). At a (r th order 
critical point (see (3.25)) we find at T~ that 

U;,,, 2~(k~ . . . .  ; o)1, . . . )=0  

for re<a ,  l < m ,  

U2 ,2Z(kl . . . .  ; COl, . . . )  

=b 2+(2-a)(°- 1)(21 - ~ / ( a -  1)[) U(~)(N~) (Sz, 1 (4.15) 

valid for arbitrary b. Furthermore for large b 

U;, , ,a(k ,  . . . .  ;o)1,--.) (4.16) 
=bZ+(2-a)(m-1)(21-m/(m - 1)!) U(")(N~), m > a .  

It is apparent that k- and co-dependences do not arise 
in the couplings at higher order critical points at T~ 
which is due to the fact that the quantity U~, 2(k, 0)) 
vanishes at To. A consequence of (4.15) is that at a 
critical point of order a the scaling field with the 
largest exponent, 2 + ( 2 - d ) ( a - 1 ) ,  is just U(~')(N~) 
as already mentioned at the end of the last Section. 
Of course for d>d~ the Gaussian fixed point is ob- 
tained. 

= + ~- / ..... ~ + " "  

Fig. 3. Graphic representation of the equation of motion after the 
first iteration in step a. Notations: - -  qSj, k,~, - -  ,~(o) ~ j ,  k, co 

=G(°)~j.k,o]FkC, > GW)(k, co), . . . . .  (-u4,2). Lines with a 
slash carry wave numbers larger than A/b 

place the variables 4)j,k,~, k < A / b  by new ones cor- 
responding to (2.11). 
Through this procedure we arrive at new equations of 
motion which are more complicated than the starting 
ones, they contain higher order couplings and ran- 
dom vertices. The parameter space should contain not 
only the mean values of these vertices but all higher 
order cumulants among them [36, 14]. 
Our model serves as a good example to illustrate this 
general concept. Let us start with the 4) 4 model, 
(4.14). Step a) can be performed by an iterative so- 
lution of Eq. (2.4). The result of the first iteration is 
represented in Fig. 3 indicating that the coefficient of 
4)y,k,~ on the r.h.s, has become a random variable the 
full specification of which requires the determination 
of all its cumulants [14]. As a matter of fact none of 
these cumulants can be neglected in the large-n limit. 
An other important difference between our case and 
a calculation up to order e is that we must not stop 
after the first iteration as the successive steps generate 
cumulants of the same order of magnitude as the first 
one. Fortunately the leading contributions in n can 
be summed up yielding closed expressions for the 
cumulants. Figure 4 shows some examples in a graph- 
ic representation: azm,2~ denotes the contribution 
of diagrams with l external response function lines 
and 2 m - l  order parameter lines. 
Comparing the graphs of the perturbation expansion 
for the action and those just discussed, one im- 
mediately recognizes that their contributions are es- 
sentially identical. If weighting factors are also taken 
into consideration the following simple relation is 
found 

V. DRG Transformation Carried 
out on the Equation of Motion 

If the D R G  transformation is defined on the equa- 
tion of motion it involves the following steps [12-14]. 
a) Eliminate the variables 4)j,k,~o with A / b < k < A  by 
solving their equations of motion in terms of the 
remaining ones and the random forces and substitut- 
ing the solutions in the remaining equations, b) Re- 

U2m,21(kl . . . .  k , , -1 ;  0)1 . . . .  COm- O 

=lu2m, 21(kl, .--km_a; CO1, ..-C%_ 1)- (5.1) 

This relationship indicates that the two definitions of 
D R G  are equivalent only if the higher cumulants of 
the random vertices in the equation of motion are 
taken into account as elements of the parameter 
space. Moreover it provides a physical interpretation 
of the new couplings generated by the D R G  in the 
action. 
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Fig. 4. Diagrams of a few second and third cumulants of the equation of motion after the D R G  procedure. The thick lines ~ and 
, o ~ denote dressed propagators with are of the form of (4.2) and (4.3) but with u2, 2 replaced by u'2,z/b z and with k>A/b. The broken 

line represents the effective interaction (A.2) 

Thus our investigation shows explicitly how the 
simple Langevinian form of the equation of motion is 
lost after applying the DRG. New vertices appear 
which are random variables. The distribution of these 
stochastic quantities is non-Gaussian since the higher 
order cumulants do not vanish. They are not even 
delta correlated, exhibit especially co dependences 
indicating the role of memory effects. On the other 
hand the character of the original random noise does 
not change in the large-n limit. In the present de- 
scription it follows from the fact that diagrams con- 
taining only ingoing external lines do not contribute 
in leading order. 
Appendix B shows how the structure of the equation 
of motion is modified when the D R G  is applied in 
the presence of symmetry breaking. The main differ- 
ence lies in the more complicated k- and co-de- 
pendences of the couplings and in the appearance of 
new types of cumulants. As straightforward con- 
sequences of these facts a and F do not remain 
constant in the equation for the longitudinal com- 
ponent of the order parameter (B.2) and the Langevin 
noise loses its white spectrum (B.3). 

VI. Discussion 

We have studied here the working of the D R G  in the 
large-n limit for dimensions 2 < d < 4 .  The discussion 
has included critical points of arbitrary order. 
One of the main general conclusions of our investi- 
gation is that the parameter space should be ex- 
tended to include a manifold of couplings with two 
indices: 

{g2m,21jm= 1, 2, . . .  ; l < m } .  

It is obvious that this property is not restricted to 
large n. As a matter of fact at arbitrary n even further 
parameters may arise, for instance the coefficients of 
terms like q~4. So in general the D R G  does not 
preserve the Langevinian form and Markoffian char- 
acter of the original equation of motion, but the noise 
and the vertices become coloured stochastic quan- 
tities with non-Gaussian distributions. 
The physical interpretation of the parameters in the 
action i.e. the correspondence between them and the 
parameters of the equation of motion (e.g. (5.1)) is 
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valid for arbitrary n indicating that there can be a 
connection between stochastic differential equations 
and path probabilities even i n  more general cases 
than that of the Langevin equation. 
Concerning the properties of the parameters it is 
worth mentioning that as can be easily seen, the 
parameters of the action, U 2 a ,  2 ~ o r  u 2 a , 2  z become 
dimensionless at dimensionality d~, ~ = [2 a - (2 + c) (z 
-1) ] / (a-1)  where again c=O, 2 for the case of non- 
conserved and conserved order parameters, respec- 
tively. The following properties can immediately 
be concluded: do, 1 = d~ and correspondingly gives the 
marginal dimension of the critical point of order a 
(d,>2); d~,2=2 for arbitrary o- provided the order 
parameter is not conserved; in all other cases d~,~ <2 
for z>2 ;  for a fixed z in the limit a--+ oo d~,~ con- 
verges to 2. These properties indicate the special role 
of dimension 2. 
Our investigations in the large-n model have been 
restricted to d > 2. In this regime none of the dynamic 
parameters become marginal. 

where Jb(2)(k, 0)) can be expressed by the same integral 
as Ib(i)(k, 0)) (see (4.9)) but U£, 2 is replaced by u~, 2. 
u'<4(k, 0)) is determined by the fluctuation-dissipation 
theorem* 

u;, 4(k, 0)) = ( - 2/0)) Im u~,, 2(k, 0)). (A.3) 

If we represent u' 2(k, 0)) by the series 4, 

/A~, 2 (k, 0)) = ~ c;, ~ (k2) ~ (i 0))P (A.4) 
a, fl 

then (A.3) requires 

c{~,1 = ( -  1/2)u~,, 4(0 , 0) 

For u6, 2(kl, k 2 ; (01, 0)2) we find 

U;, 2(kl,/*;2; 0)1, 0)2) = u~, 2(kl,  0)1) u~, 2 (k2, 0)2) 

• U4, 2(kl - k 2 ;  0 )1-0)2)  {nJ(b3)(kl, k2; 0)1, 0)2) 

+ b a- 6 U(3)(j~I)) [-V(2)(jb{1)) ] - 3} (a .5)  

with 

Jb(3)(kl, k2 ; 0)i, 0)2) = ~ qC(kl - q)C (kl - k2 - q)~ [B1 B2 B3]-1 

-0)1BI B2 -0)2B2 B3 -(0)1-0)2) B1 B3 -i(B1 +B2) (B2 +B3) (Bt +B3) da q 
(0)1 + i(B1 +B2)) (0)2 + i(B2 +B3)) (0)1-0)2 + i(Bt +B3)) (2 7z) d 

Further characteristics of the dynamic renormali- 
sation group transformation in the large-n limit, par- 
ticularly the determination of the linear and non- 
linear scaling fields and scaling variables will be 
discussed in a subsequent paper. 

Helpful discussions with Prof. G. Meissner and Dr. N. Menyh•rd 
are gratefully acknowledged. One of us (P.Sz.) would like to 
express his thanks to Prof. G. Meissner also for his hospitality at 
the University of Saarland. 

Appendix A 

R e c u r s i o n s  of U2, 2, hi4., 2, U6, 2 and  U6, 2 

We write down here the transformation of the first 
terms of the set {U~m,2t(k 1 . . . .  ; 0)1, "")} obtained by 
the perturbative method starting with the local in- 
teraction given by (2.6). Thus 

U~, 2 = b e  U(1)(J~I)), (A.1) 

where d~l)= b 2-d {2(0, 0) + N c and Q has been defined 
in (3.12). Furthermore 

b4-a(1/2) U(2)(J~I)) (A.2) 
U~, 2(k, 0)) = 1 +b#-a(n/2) U(2)(J~ 1)) J~2)(k, 0)) 

(A.6) 

where the momenta q, Ik l -ql ,  I k l - k 2 - q ]  are re- 
stricted to the interval (A/b, A) and 

B 1 -=qC(q2+u2,2),  

B2 _ (k 1 _ q)2 ((kl _ q)2 + u,2, 2), 

B3 ___ (k 1 __ k2 _ q)2 ((kl _ k2 _ q)2 + u~, 2)" (A.7) 

The expression of U6,2(kl,k2; col,0)2) can be ob- 
tained from (A.5)-(A.7) if we write U instead of u and 
I b instead of Yb in these formulae. 
For the large-b behaviour at T~ around the non-trivial 
fixed point (2 < d < 4) we find 

A t l d - 4  U2,2 U4 ' U2,2 = g o  * * 2(0,0), 

A l,l*4, 2 (k, (I)) = g b d - 4 {2 Eul, 2 ( k, 0))] 2 

+ 4u~,2  u~,2(k,  O; 0),0)}, 

A U6, 2(kl, k2; 0)1, 0)2) 

=g  bd-#2 U~,2(k,, kz; 0)1, 0)2)" { U*, 2(k> 0)0 

-F U:, 2(k2, 0)2) + U:. 2(kl - k2, 0)1 - 0)e)}' (A.8) 

The fixed point expressions occuring in (A.8) can be 
deduced from (A.1), (A.2) and (A.7). 

* Similar fluctuation dissipation theorems have been discussed by 
Bausch and Halperin [37] 
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Appendix B 

DRG in the Presence of  Symmetry Breaking in Case 
of  a Non-Conserved Order Parameter 

In the presence of a homogeneous time-independent 
external field H coupled to the first component of the 
order parameter the average of q~ becomes non-zero, 
(~bl(x, t ) )=M(H).  According to the equation of state 
[3] M=(9(na/2). In order to study quantities of the 
same order of magnitude in the equation of motion it 
is convenient to separate the contribution of M by 
substituting 

ff) l , k ,w - M (H) V 1/2 (~k, o 2 7r c5(0))--* q51,k, o,, 

which yields different equations of motion for the 
longitudinal component (j = 1) and for the transverse 
ones (j > 2). In both cases vertices with an even power 
of q5 are also involved. 
After applying the DRG a number of new dynamic 
parameters arise, not necessarily independent ones. 
We recall here only a few of them for the case when 
we start from the q~* model (4.14). The transverse 
parameters u~, 2 T, a),  F~ are given by similar transfor- 
mations as (A.1) with U(1)(X)=U2,2T+U4,22X and 
(3.8). Initially U2,2T=U2,2+U4,2 M2. If a T and F r are 
chosen to be unity u'4, 2r(k, co) is determined by (A.2) 
but u~, 2 is to be replaced by U2,2T. An interesting 
novel feature of the transformation is the k- and 0)- 
dependence of the averaged longitudinal two-leg ver- 
tex (see Fig. 5 a) 

u'z,2L(k, 0))=U'2,2T + 2U'4,2T(k, 0 ) )M ' z (B.1) 

where 

M' = b d/2 - a M. 

The latter relation indicates that M = 0 is required on 
the critical surface. As a consequence of (B.1) neither 
ak nor F L' remains unchanged by the D R G  transfor- 
mation 

' a+aU'2'2L(k'O) k=o' 
a L = ~k 2 

1 _ 1 au~,2L(O,?) . (B.2) 
r + a ( - i 0 ) )  ,o=o 

© 
> O_ _ _ Q ~ _  _ _Q___ > 

a) 

,. C)___ O _(3., , . o  O 

b) c) 

Fig. 5a-e.  Some typical diagrams in the ordered phase. The circle 
at a vertex denotes M. The thick lines ~ and ~ repre- 
sent the transverse response and correlation functions given by 
(4.2) and (4.3), respectively, but  with u'2,2w/b 2 instead of u2, 2 and 
with k>A/b .  The broken and dotted lines stand for the series of 
transverse bubble graphs and for u4, 2, respectively 

becomes non-local in time. The contribution of this 
graph is determined by the fluctuation-dissipation 
theorem 

fi2, 4 L ( k, 0)) = ( -- 2/0)) Im u '2, 2L (k, 0)) (B.3) 

implying as a special case the relation 

~ ,  4L(0, 0) = 2 (1/F~ -- 1/F), (B.4) 

which is expected also on physical grounds. 
Finally it should be noted how the derivation of the 
equation of state is included in this calculation. Let 
us perform the limit b ~ oo in the equation of motion 
but without introducing new scales. This procedure 
corresponds to solving the problem for fields with k 
--0, 0)= 0. After averaging the longitudinal equation 
we obtain 

Kdqd-  l dq 
M (U2,2T+U4,2n ~ q2~_l=~m~zT/b2)  ! = H ,  

b~ oo 

(B.S) 

where the integral arises from the diagram of Fig. 5 c. 
Comparing this relation to the expression of u'2, 2 T we 
find 

Both e L and F~-1 diverge when b--* oo for a non- 
zero M. 
Investigating the second cummulants an other new 
feature is found. Namely the diagram shown on 
Fig. 5b indicates that the longitudinal noise loses its 
white character since its auto-correlation function 

lim (u~, 2 T/b2) = H/M, 

which implies that (B.5) is equivalent to the equation 
of state [3]. This procedure, however, can not be 
considered as a step of the D R G  transformation 
rather it is a complementary calculation. 
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