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A general discussion of scaling fields and scaling variables in the dynamic renormali- 
zation group is given using path probability formalism. It is shown that scaling variables 
are the derivatives of the action with respect to scaling fields. The general ideas are 
illustrated on the multicomponent relaxational model in the large-n limit, where scaling 
fields and scaling variables are calculated explicitly and flow lines, crossover and 
universality are discussed. Critical points of higher order are also included in the 
investigation. 

I. Introduction 

Scaling fields [1, 2] and scaling variables [3] give the 
most concise formulation of the renormalization 
group transformation in describing static critical be- 
haviour. Scaling fields are parameters with especially 
simple transformation rules and represent a special 
set of solutions of the non-linear renormalization 
group equations, scaling variables are random vari- 
ables having well defined scaling dimensions. Com- 
plex phenomena, such as crossover [4] are most 
conveniently discussed in terms of scaling fields, 
while scaling variables help study certain properties 
of correlation functions [3]. The large-n system (n 
being the number of components of the order param- 
eter field) [5] has served as a good example in 
understanding these general ideas in statics [3, 6- 
10]. 
Our purpose here is to investigate the general proper- 
ties of scaling fields and variables in the framework of 
the dynamic renormalization group (DRG) and carry 
out explicit calculations in the non-trivial but exactly 
solvable model of the large-n system with purely 
relaxational dynamics. The DRG transformation in 
this model and related topics have been discussed in 
[11] and 1-12] ([12] will be referred hereafter as I). 
The path probability formalism [13] with an ad- 
ditional response field 1-14-16] proved to be very 

convenient in constructing DRG (see also I). Using 
this technique a general discussion is given on dy- 
namic scaling fields and variables. It is shown that 
the scaling variables can be derived by differentiating 
the action with respect to scaling fields. 
Turning to the large-n limit we introduce an action, 
based on the results of I, which is more general than 
that of a simple Langevinian dynamics and provides 
a sufficiently wide parameter space for studying scal- 
ing fields and variables. 
In general scaling fields, scaling variables and the 
corresponding exponents depend on which fixed 
point they are related to. For 2 < d < 4  (d is the 
dimensionality of space) there exist two fixed points 
in the large-n system. Both the trivial and the non- 
trivial fixed point representations are worked out in 
this case. The scaling fields are constructed explicitly 
by means of appropriate generating functionals. 
The static scaling fields [9] are recovered as a 
subset of this manifold. The DRG transformation 
can be linearized around the fixed points, de- 
monstrating the correctness of the general assump- 
tions of RG procedures. The exponents of the dy- 
namic scaling fields and the dimensions of the dy- 
namic scaling variables depend on whether the order 
parameter is conserved or not. In order to illustrate 
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some interesting features of the global solution in the 
large-n limit, D R G  trajectories are determined and 
crossover phenomena are investigated in course of 
which it is shown that the attraction of the trivial 
fixed point is stronger when the order parameter is 
conserved. Furthermore, universality is also demon- 
strated. 
The scaling variables are explicitly given in the large-n 
case. It is shown that the scaling variables are just the 
coefficients of the scaling fields in the generating 
functionals of scaling fields. Scaling products of scal- 
ing variables analogous to those obtained by Ma in 
statics [3] are also calculated. 
Inherent in the model there are critical points of 
higher order, too, whose associated scaling fields and 
scaling variables are also deduced. 
The outline of the paper is the following: Sect. II 
contains the general discussion of scaling fields and 
variables. In Sect. III the D R G  transformation is 
derived for the large-n system. The scaling fields 
associated to both the trivial and the non-trivial fixed 
points are given in Sect. IV, where flow lines and 
crossover are also discussed. Section V is devoted to 
the determination of scaling variables in both repre- 
sentations. 

II. Scaling Fields and Scaling Variables 
in the Dynamic Renormalization Group - 
A General Discussion 

Let us consider a system the dynamics of which is 
described by the probability distribution 

W =  exp ~r {45, 49} (2.1) 

where ~(x, t)={49j(x, t ) l j=  l, 2, ... n} denotes the n- 
component order parameter with momentum cut-off 
A, 45(x,t) is the corresponding response field and 
sg{~, 49} represents the action functional of the pro- 
cess [14-16J. 49j(x, t) and ~(x ,  t) or alternatively their 
Fourier components 49j, k,o and ~j.k,o (for the de- 
finition see I (2.12)) are the basic random variables. 
With the help of the probability distribution the 
average value of an arbitrary random variable B can 
be expressed as 

(B), ,  = ~ 5~645 B exp sr 649645 exp sg (2.2) 

where 

56~5~0----[. I~ d~k~od~k~o" (2.3) 
j , k < A , o  

The probability distribution W is specified by a set of 
parameters # (the parameters of the action). The 
dynamic renormalization group transformation R b 

transforms # to # '=  R b #. R b is given by the relation 

W ' =  exp d {#', 45, 49} 

] , A / b < k < A , m  

�9 expag {#, 45, 49}tee .... ~be*~.~=~,. (2.4) 

The constants y ,y  and z are determined by the 
requirement of the existence of a fixed point #* 
defined as 

Rb#* =#*. (2.5) 

The values of y, ~ and z may depend on which of the 
fixed points they belong to. 
For the random variables 49k, ~o and 45k, ~ with k < A/b, 
W and W' are equivalent in the sense that 

- - c ,  NtUbkl,bzo) 1 . . . . . .  

45bk,,b=o,)~" (2.6) 

The transformation of an arbitrary random variable 
B under Rb, B ~ B ' ,  is defined as follows: 

(B 49k . . . .  ... 4~k .... >w 

- -  < B > w  < ~ 1 ,  0) 1 *' '  45kz, ~,)~ = b~'+('-")y 

- -  ( B ' } . ,  ( O~k l  ,b z OJl " "  45bkl, bz(Dl )Yr (2.7) 

for any k 1 .. . .  k ...... k~<A/b, o) t . . . .  o I and m, l. 
Following from the semigroup property of the RG 
transformation one can construct a set of functions 
gi(~t), similarly as in statics [1, 2], to each fixed point 
such that gi transforms under R b as 

g ' ,~g , (Rb#)=b' ,  &(#) , i=1 ,2 , . . . .  (2.8) 

The quantities gi are called scaling fields, the constant 
Yi is the exponent of gi. The scaling fields form a 
more convenient set of parameters than # but general 
procedures for the construction of the scaling fields 
are not known. We suppose here that the set 
g-(g1,  g2,-.-) and the corresponding exponents yi are 
given and use g instead of #. 
Generally the random variables are functions of 49 
and 45 and also depend on the set of parameters g. In 
introducing the scaling variables as special random 
variables and discussing their properties we general- 
ize the treatment followed by Ma in statics [3] to the 
situation in dynamics. 
The random variable ~ which obeys the transfor- 
mation rule 

# ( g ) - - , ( ~  (g))' = be ~(g ' )  (2.9) 
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is called a scaling variable with scaling dimension 
(-e) .  Let us consider 

~,(g) = ~?d(g)/0g, i=  1, 2, .... (2.10) 

Then 

~i(g') = a~r (g')/0g'~ (2.11) 

where sr represents the action functional af- 
ter the transformation. Differentiating (2.6) with re- 
spect to g~ and using (2.2) and (2.7) the transformation 
rule 

~i(g) -+ (~i(g))' = bY' ~i(g') (2.12) 

follows directly. It means that @i(g) is a scaling 
variable with dimension (-y~). 
It is worth mentioning that the quantity ~ j  is in 
general not a scaling variable. The following com- 
bination, however, which will be called the scaling 
product of ~ and ~ j  

{ ~  ~j} _ @~ ~ j +  ~2 ~r 0gj 

02 
= exp ( -  d )  ~ exp ag (2.13) 

cg~ og.i 

gives a scaling variable. The corresponding dimen- 
sion is ( - y i - y ) .  This can be shown by differentiat- 
ing (2.6) twice with respect to g~ and gj. 
It is often convenient to use the so called local 
variables. D~(g; x, t) is a "local variable" related to 
~i(g) if 

~ i (g )  = f dd xdt Di(g; x, t). (2.14) 

From relations (2.10) and (2.14) one expects that 

D,(g; x, t)= OA(g; 6(x, t), qS(x, t))/0g~, (2.15) 

where A(g; ~, ~b) is defined by 

-sO {g; q~, ~b} = f  dexdtA(g; ~(x, t), ~(x, t)), (2.16) 

is a local scaling variable with dimension d+z-y~.  
Note, however, that the transformation rule 

P~(g; x, t)--+b-d-z +Y* Di(g' ; x/b, t/b ~) 

is correct only if D~ is a slowly varying function of x 
and t. 
The local variable related to the scaling product 
(2.13) is 

{Di(xl, tl)Dj(x2, t2)} =Di(xl,  tl)Dj(x2, t2) 

+ Di, j(x ~, ti) 3(x i --x2) 3(t i - t2 )  (2.17) 

where 
Di, j(x, t) = c? 2 A/c~gi Ogj. 
The associated scaling dimension is 2(d + z ) -  (y, + Yi)' 

The scaling variables form a basis set, i.e., an arbi- 
trary random variable can be expressed as a linear 
combination of the scaling variables. When the sys- 
tem is near its critical point only a few terms with the 
lowest dimensions play an important role in this 
series. 
It is worth comparing the scaling fields and variables 
resulting from static and dynamic calculations, re- 
spectively. In the course of a dynamic calculation the 
set of scaling fields g can always be constructed in 
such a way that a subset of it, g~ depend only on the 
static parameters. The scaling fields of this subset 
correspond to those of a static calculation, up to a 
constant factor. On the other hand, there is no simple 
relationship between the scaling variables obtained in 
dynamics via differentiating the action with respect to 
the elements of the set gs~ and the scaling variables 
deduced in statics. 

IlL The DRG in the Large-n Limit 

In the first part of this work (I) we have started with 
an action functional corresponding to a simple 
Langevin type equation of motion. It has been shown 
there that DRG generates new couplings in the ac- 
tion. These are strongly related to the eumulants of 
the vertices which become random variables in the 
equation of motion under e b (see Sect. V of I). We 
have determined the general form of the action aris- 
ing after the D R G  transformation in the large-n limit 
above T c treating only couplings local in space and 
time which transform among themselves (see (3.1) of 
I). 
In order to construct the complete set of scaling fields 
and scaling variables in this parameter space we start 
with the afore-mentioned action 

d {~, 4} =Iddxdt 

"[y--~l {-~'L~+i(aa(~j-aLAOi)}+Y(OZ'~P)] (3.1) 

where 

qb2=(1/2) ~ q~2 (3.2) 
j - 1  

q)=i ~ ~jL~j+(n/2) FV -1 ~ k c, (3.3) 
j - -1  k < A  

L=F(i V) c, c=0,  2 in the case of a non-conserved and 
a conserved order parameter, respectively. V denotes 
the volume of the system. 
The action given by (3.1) corresponds to a general 
equation of motion the vertices of which are delta- 
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correlated random variables with non-Gaussian dis- 
tributions. The parameters uz,,, 2~ defined as the Tay- 
lor coefficients of the function Y(~b 2, go) (for the de- 
finition see I (3.3)) form one possible representation 
of the parameter space #. The quantities u2m" 2 denote 
the average values of random coefficients of terms 
like ~2rn--1 in the equation of motion, while the 
parameters u2~ ' 2, l > 1 are related to the higher order 
cumulants of the random coefficients (for more de- 
tails see Sect. V of I). 
Y(q5 2, go) can be any function with the restriction 

y(q~2, 0) = constant - Y(N~, 0). (3,4) 

This is required by causality which can be proved by 
similar arguments as in Appendix C of [16]. Equa- 
tion (3.4) insures that the response function loop 
cancels the contribution of the functional Jacobian. 
Later the constant Y(N~, 0) in (3.4) will be chosen to 
be zero. 
To perform the DRG transformation (2.4) we decom- 
pose the fields into two parts 

qSj ~ q~j + q~j, j =  1,2,... n, (3.5) 

where ~bj on the right hand side involves only wave 
numbers smaller than A/b, while ~j contains the large 
wave number components. A similar separation is 
valid also for q~j. Since n is large and both q~2 and c~ 
are sums of n terms, the relative fluctuations of these 
quantities are small, that is 

$ -  <q3>b~O(n), 62-<62>b~e(n), (3.6) 

where (...>b denotes the average over field variables 
with wave numbers between A/b and A. 
It follows from (3.6) that the action functional can be 
expanded in an appropriate way in powers of qb 
-<qa}b a n d  ~ 2 _  <t]~2}b making possible to perform 
the D R G  transformation by simple Gaussian in- 
tegrations. The details of the calculations are re- 
legated to the Appendix. Before discussing the result 
we recall two notations already used in h 

Y< ~(~b 2, ~0) - 0 ~+J Y((b z, go)fi? (~b 2) i 0go j (3.7) 

- K  a ~ dq qa-1, (3.8) 
q A 

where Kd(2~z) a is the area of the d-dimensional unit 
sphere. The D R G  transformation can more con- 
veniently be given for the two first partial derivatives 
of Y instead of Y. We obtain for them 

, 2 Y~,o(~b , go)=b*+cYl,o(b 2 aQ(gb2, go) 
+ N ,  b-d-~R($ 2, go)), (3.9 a) 

y/  b 2 o, l(q ~z, go)= I70 l(b2-eQ(q ~2, go) 
+ N~, b-a-C R(4) z, go)), 

where 

(3.9b) 

Q ( ~ 2  go)=~2  N c + ( n / 2  ) i (qc/2s-a--q-2), (3.10a) 
q 

R(0 2, go) 

=go--(n/2) i (q3C/2(q2 + y;, i(052, qo)) S - 1  __qc), (3.10b) 
q 

with 

S_{qC(qZ+yd,~(~z, go))z_2 y;, o(qbz ' q))} ~/2, (3.11) 

N~ = (n/2) K a A a- 2 / ( d  - 2). (3.12) 

Since the parameters a and F do not transform (a 
similar situation has been found in I, see (3.8), (3.9) of 
I) they have been set equal to unity in equations 
(3.9)-(3.11). 
An important feature of the recursion relations (3.9) 
is that at go=0 they describe the transformation of 
the static parameters as it can also be seen by com- 
paring (3.9) with the results of I. This feature can be 
traced back to the consequence of (3.4) 

Y1, o(% 2, 0) -0 .  (3.13 a) 

In the special case Y(~b 2, go) = go U ~1) (q)2), which corre- 
sponds to the initial action used in I, the recursion 
relations (3.9) reduce to equations (3.10)-(3.1I) of I. 
The .fixed point is generated by taking the limit 
b ~ 0o. It can easily be seen that the critical surface is 
specified by 

Yo, 1(No, 0)=0. (3.13b) 

For d > 4 always the Gaussian fixed point is reached: 

Yff(O 2, go)-O. (3.14) 

For 2 < d < 4  the Gaussian fixed point exists but it 
can be stable only if Y0, z(Nc, 0)=0. If, however, 
Y0,2(Nc, 0)>0 a new non-trivial fixed point arises 
which is stable. The fixed functions Y6"1 and Yl*,0 
associated with this fixed point are determined by the 
same equations as in I ((3.20) and (3.21) of I) where 
we started from a different initial action. This is a 
manifestation of universality. The connection be- 
tween Y* and its derivatives is given as follows: 

Y*(~b 2, go)=(gb2-Nc) Y* +goE* 1,0 0, i 
co 
r K d--1 --(n/2) ] dq +c{I-(q2+ro*j 2 - 2  Y~,oq* -c] 
A 

_(q2+ y~,l)+ y .  q-2 1, o -c} dq. (3.15) 
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IV. Scaling Fields in the Large-n Limit 

In order to construct the set of scaling fields one 
should find a function of the random variables which 
follows a simple transformation under R b. 
For this purpose let us consider the Legendre trans- 
formation of y(q~2, q0): 

2(Z1  ' Z2): y _  (~)2-Arc)  z 1 -~oz 2, (4.1) 

which is regarded as a function of the variables 

z l  ~ Y I ,o=aY / (~ (O  2, z2=- Yo, I=c3Y/Gqq). (4.2) 

Note that for convenience the notation z~ and z 2 will 
be used for I11, o and Yo, t, respectively, in this Section. 
It follows from (4.1) that 

0 2 -- Xc = - a2/(~z1,  (D = -- aZ/Oz2. (4.3) 

The transformed quantity Z,' is defined similarly 

2'(~i, z l ) :  y ' -  ( @ -  N0 z; - <0zl, (4.4) 

~)2 __ N r  - c3Z'/Oz i , q) = - O,Z'/c3z' 2. (4.5) 

The connection between Z' and 2 is given as 

~t t Z (z> z'j=bd+Z+~2(b-4-Czl, 2 , , , b z2)+F(zl,  z2) , (4.6) 

where 

F(z~, z2)= - (n/2) i f (q;  Zl, z2) (4.7a) 
q 

with 

f (q; Z1, Z 2 ) = q  c {[(q2 + z2 )2 - -  221q--C]~ 

_(qZ +z2) +z  1 q-  2 -~}. (4.7 b) 

The transformation rule (4.6) can easily be verified 
using (3.9), (4.3), (4.5) and the fact, that 

c~f / c ~ z i = Q - ( 4 2 -  Nc), ~?f /~?z'2=R-qo , 

where Q and R are defined by (3.10). The recursion 
relation (4.6), (4.7) with za and z 2 as independent 
variables is equivalent to the transformation (3.9)- 
(3.I2) where 4) 2 and cp are regarded as independent 
variables. 
In order to rewrite our results in a more convenient 
form, let us introduce the function 

Z ( z x ,  Z 2 ) : 2 ( Z 1 ,  Z 2 ) - - Z * ( z 1 ,  Z2) , (4 .8a)  

where 

,Z*(z~, z j :  -(n/2) ~ Keq e-~ f (q ;  z~, z2) dq (4.8b) 
A 

is the expression of 2 at the non-trivial fixed point. 
This can be directly seen by substituting 2* into (4.6). 

Furthermore it can be shown using (A.11) and (3.9) 
that Z' goes over to 2* for large b if one starts from 
the region of attraction of the non-trivial fixed point. 
It is worth mentioning that Z*(z*, z*) is just the 
Legendre transformation of Y*(q5 2, q)). The function 
Z defined by (4.8) transforms in a simple way under 
eb :  

Z / l  t ~ x t d + 2 + c  tzi, z2)=o Z(b-4-Cz'l ,  b -2 Z'2) (4.9) 

as a consequence of (4.6), (4.7). Equation (4.9) will 
play an important role in deriving the scaling fields 
and scaling variables. 

Scaling Fields Associated 
with the Non-7]qvial Fixed Point 

Let us consider the quantities g,~ defined by the 
Taylor expansion 

Z(z> z j =  ~ g~,az~ z~. (4.10) 
~>0, B->_O 

It follows from the transformation rule (4.9) and from 
the definition (2.8) that the parameters gap are scaling 
fields: ,,' - hy-.e with 

y~,~=d + 2 + c - ( 4  +c) cz- 2fl. (4.11) 

It is clear from (4,8a) that the scaling fields g~ are 
associated with the non-trivial fixed point, where all 
g~, fl=0. 
As a consequence of (3.4) and (4.2) z 1 - 0  if ~0=0. 
Thus from (4.1) we obtain, that 

Z(0, z2)= constant = Y(N~, 0). (4.12) 

Comparing (4.12) with (4.10) one concludes that the 
scaling fields go, a with f l>0  can never be present. It 
is worth discussing here shortly the role of the quan- 
tity go, o = Y(No 0). This scaling field increases with b 
as b d+=. It is related to the constant term of the action 
(to the normalization factor of the probability distri- 
bution W). The role of go, o is analogous to that of 
the static scaling field go with exponent d (which 
represents the non-singular part of the free energy 
I-2]). Similarly to go neither go, 0 influences the criti- 
cal behaviour of the system, therefore from now on, 
we shall set Y(Nc, 0) equal to zero. Thus in what 
follows the sum over ~ in (4.10) will start with ~= 1. 
It will be more convenient to use the derivatives Of Z: 

~i(z~, z2)-~ - 3 Z / O z  i, i= 1, 2. (4.13) 

According to (4.8a) we can write 

Ti(Z1, Z2)'='~i(Zl, Z2)--T~(Z1,  Z2) (4.14a) 
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where 

~,=~72/82~, ~*=~2"/c9z,, i=  1,2. (4.14b) 

From (4.10) 

~1(zl, z 2 ) = -  y, g=,e/~z Iz~2 -1, (4.15) 
cz>0,//>0 

g 2 ( Z l '  Z2)'-~ --  2 g=, B c~z{ -1  z~2 (4 .16)  
~>0, fl>0 

At the non-trivial fixed point z* (z 1, z2) 
='C~(Z1, 22)----0. Using the explicit expressions (4.3) 
and (4.7b), (4.8b) one easily sees that these conditions 
and (3.20)-(3.22) of I are equivalent (the difference lies 
only in the choice of independent variables). 
As it has been mentioned, the transformation of the 
static parameters is recovered from the recursion re- 
lations at ~o=0. Since for (p=0 we have z1=0 it 
follows from (4.16) that the expansion 

"c2(0,22)=- E gl,eZ~2 (4.17) 
/~>_-0 

generates the static scaling fields. Comparing this 
with equation (3.8b) of [-9] one finds, that gl ,e=(fl  
+ 1)g(B + 1)o where gec denotes the static scaling fields 
associated with the non-trivial fixed point as de- 
termined by Zannetti and Di Castro. 
The next step is to find the relation between the 
scaling fields and the parameters in the action. Here 
it is convenient to use the representation of the 
parameter space as follows.* 

#={U2m, 2zlm>:l~l}, (4.18) 

where U2m ' 2l is defined by 

Y(q 52, q))= L ~ U2m, 2,~JE2(4)2-Nc)] =-' (4.19) 
m= 1 1 <=l<=m 

(see also Sect. IV of I). In order to obtain the scaling 
fields g~, a we return in (4.16) to the variables gb 2 and 
~o, calculate the derivatives of the equation and eval- 
uate the expressions at ~2=Nc, q)=0. 
Although above T~ the expressions obtained are very 
complicated they become tractable at Tc, where both 
z I and z 2 vanish at q52=N~, 9 = 0  due to (3.13). By 
this reason in the following only the scaling fields on 
the critical surface (T=  T~) will be discussed. This 
means that the relevant scaling field gl,0 with ex- 
ponent y l , o = d - 2  is chosen to be zero. (It can be 
seen from (4.11) that there is no other relevant scaling 
field for 2 < d < 4). 

* Since a a n d / "  do not transform they are not involved 

The first few irrelevant scaling fields are obtained as 

g~,1 =(i/2) (U* 71 - U<I), (4.20) 

g2, o=(1/4)(04,4 Us 2- U4~4 U4~ 72), (4.21) 
U - 3 - U  * U* a), gl, 2 = (1/2) (U6, 2 4,2 6,2 4 ,2  

- 3  , * - 3  g2,1=(1/4)(U6,r U<2-Ug, 4 U2,2 ) 
U - r  �9 . - r  -(U6,2 U4, 4 4,2 6,2 02,4 02,2).  (4.22) 

The fixed point values U*~, 2l in (4.20)-(4.22) can be 
read off from (3.24) of I using 

' (7) U2m ' 21-m! 2 m _ l  Ym_l,l(Nc, 0). (4.23) 

In the large-n limit one can explicitly see, that in the 
immediate neighbourhood of the fixed point the 
D R G  transformation can be linearized which is in 
accord with the general assumptions of RG pro- 
cedures. In the linear approximation the scaling fields 
g=, ~ go over to the linear scaling fields #~. a: 

~1,1 =(1/2) 6U4, 2 U~ 72 

/~2, o=(1/4) 304,4 0 ~ 2 2 - - ] . / 1 ,  1 U~4 0 ~ 2 1  

~1,~=(1/2) 3o0,~ u~7~-3~,~ u ~  u]7 ~ 
#2,~  = ( 1 / 4 )  306, 4 V ~  2 3 - - 2 / . / 1 ,  2 U4~4 U~,21 
-41~2, o U~2 U~22 
--#1,1(3 U6X,4 U~2-~-C~2 U~4 ) V~23, (4.24) 

w h e r e  3 U 2 m  ' 2 l ~  U2m ' 2 l -  U~rn, 2l" 

It is of particular interest that near the fixed point an 
explicit expression can be given for Y in terms of the 
linear scaling fields. Namely, here g=,~ in (4.10) can be 
replaced by the small quantity #~,~ and thus in a 
linearized calculation one can put z* and z* for e 1 
and z2, respectively, on the right hand side of (4.10). 
(Here we have returned to the variables ~b 2 and cp). 
Furthermore expanding 2~* around z*, z* we find 
using (3.15) that in leading order the left hand side of 
(4.10) is equal to Y - Y *  and consequently 

Y(~ b2, (P)- Y*(~b2' (P)= 2 " -*~-*r (4.25) t*c~,fl"l "2 " 
~>0,fl>O 

This expression suggests that the quantities z*~z *'~ 
_ ,~ y,t3 = Y1, 0 0,1 are eigenoperators of the linearized 
D R G  transformation. We shall return to this 
question .in Sect. V. 
Equation (4.10) makes possible to obtain the re- 
cursion relations for large b independently how far 
away from the non-trivial fixed point on the critical 
surface we started. For this purpose let us consider 
(4.10) after the transformation where 2 '  is given by 
(4.4). For large b it is sufficient to keep only the term 
with the largest exponent on the right hand side and 
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z', and z~ can be replaced by their fixed point ex- 
pressions. On the left hand side since z'~- z* and z 2 
- z *  are small quantities Z* can again be expanded 
around z~ and z* and for 2 < d < 4 we obtain at Tr in 
leading order that 

y,((])2,  q ) ) _  y , ( q S 2 ,  _ , , , 
~ ) - - g l , l Z l  Z2 

in accordance with (3.29) of I got by a direct calcu- 
lation. The scaling field g of I corresponds to g~,, in 
the present notation. 

Scaling Fields Associated with the Trivial Fixed Point 
at Ordinary and HiGher Order Critical Points 

In order to determine the scaling fields associated with 
the trivial Gaussian fixed point we consider the Le- 
gendre transformation of Z with -q and z 2 defined by 
(4.13), (4.14) as independent variables: 

Z ( ' C l , ' C 2 ) = g - } - r l z 1  -~-z-2z 2. (4.26) 

As a consequence of the transformation of Z, (4.9), 
the following recursion relation is valid for S: 

X,(zi, ~ )  = b e+ 2 +cZ( b-e-~zl  ' b2-er'2). (4.27) 

Owing to this equation the quantities -(~) defined by 5cq/~ 
the expansion 

S ( z 1  , "c2) = E rr(G) ~'u ~,~o~{  (4.28) 
r fl>O 

are scaling fields with exponents 

)(~) = d + 2 + c - (d + c) e -  ( d -  2) ft. (4.29) e,fl 

The scaling fields -(~) s=,a are associated with the trivial 
fixed point where of course z~a(v~, %) 
=z~(~x,~)=0. 
Following from the requirement of causality, (3.13), 
r ,  =0  if (p=0, (z, =0) thus S(0,~2)= Y(N~,O). 
Comparing this with (4.28) one concludes that go,e~(a) 

(~) g = 0  for all positive f l - s .  Furthermore g0,0= o,o 
= u 0) which vanishes due to our previous choice 
of Y(N~, 0). So the sum over ~ in (4.28) will start with 
c~=l. 
The subset of the static scaling fields is related to the 
value c~ = 1 also in this case 

g(G)  _ (R + 

where g~, denotes the static scaling fields associated 
with the trivial fixed point determined in [9]. 
When deducing the relation between the scaling fields 
g(a) and the elements of the parameter space (4.18) we e, fl 
return to the variables q52 and q) in Z. The quantitites 

g(G) ~,e are obtained by differentiating (4.28) and evaluat- 
ing the expressions at ~b2=N~ and cp=0. Here again 
only the scaling fields on the critical surface will be 
discussed i.e., the relevant scaling field g~,0-(G) with 
exponent ,,(a) _ ~ will be chosen to be zero. Yl ,0  - ~  
The expressions for the scaling fields g~a.~ ,(G) and , ~ t52,0 
g(iG,)2 can be summarized in the formula 

gin) _ ( _ 1)~g=,egi-(~+ e) (4.30) 

g ( G )  however, can not be expressed in terms of the 2,1~ 
scaling fields associated with the non-trivial fixed 
point in a simple way since 

g ( • )  -2(u~ ~ u * ~ -  u *  u 3 ~ ) ( u % -  u < o  - ' 
2, i - -  , , 6,4- , , 

-siV ,eU; -u& u2 ) 
. ( g4 ,  4 g,~-~, 2 __ g2-~, 4 U4 ' 2)(Ud~ 2 _ U4,2 ) 4 (4.31) 

where U2",,,2 t denotes the fixed point values at the 
non-trivial fixed point. Note that the scaling field g{G~ 
is a relevant one for d < 4  since "(a) = 4 - d .  This Yl,1 
reflects the instability of the trivial fixed point: for 
g(1G{ 4=0 the non-trivial fixed point is reached as b 
goes to infinity, while '(a) g1,1 diverges (crossover phe- 
nomena will be discussed in the next subsection in more 
details). When ,,(a) is chosen to be zero, which ac- ,51,1 
cording to (4.20) and (4.30) is possible only if U4, 2 =0,  
the trivial fixed point becomes stable for d>3.  This 
situation corresponds to a tricritical point. For d < 3 

�9 (~)  - 6  2d. ,(G) is also a relevant scaling field with y l , 2 -  - 5,1,2 
If, however, also ,,(G) is chosen to be zero (U<2 = U 6 2 81,2  
= 0) the trivial fixed point becomes stable already for 
d>8/3.  This specifies a critical point of fourth or- 
der. 
In general at a critical point of order a U2,,,2=0 for 

c'(G) = 0 m < a  and U2~,2>0 are required. In this case ,51,m 
for m < ~ - - i  and it is easy to deduce the most re- 
levant scaling field g(~)l related to this critical point 

g(~) _-)(o 1) U2c~ ' 2, with ~1, 1 1,1 - ~ ,,(~) = 2 - (d - 2) ( ~ -  1). 

It indicates that the trivial fixed point is stable for 
d > do = 2 ,5 / ( a -  1). Further scaling fields ,,(~) s~,~ can be 
obtained from relations like (4.30), (4.31) and from 
the condition U2,,, 2 = 0 for m < a. 
The linear scaling fields �9 (G) of the trivial fixed point /z~,/~ 

are given as the linearized expressions of the scaling 
fields ,(m Sufficiently close to the trivial fixed point 8~,/?" 
g(f~ in (4.28) can be replaced by the small quantity 
#!~. As a consequence of (4.1), (4.8) and (4.26) in 
leading order in zl and z2 S =  Y and thus near the 
trivial fixed point 

Y(q52, ~o)= ~ ,(G) qo~(q~2 Ny. (4.32) 
a > 0 , 3 > O  



256 P. Sz6pfa lusy  a n d  T. T61: Sys tems  wi th  M a n y - C o m p o n e n t  O r d e r  P a r a m e t e r  II 

It has been used that z~ and ~2 in this approximation 
go over to ~0 and q5 z-N~, respectively, as it follows 
from (4.13), (4.14). Comparing (4.19) and the generat- 
ing function of the linear scaling fields (4.32) one 
obtains the relation 

#(,G~ =2  ~ U2(~+~), 2~- (4.33) 

It follows from (4.32) that q~(q52 - N y  is an eigenoper- 
ator of the linearized D R G  transformation near the 
trivial fixed point. 
Finally it is of interest that equation (4.28) applied 
after the transformation makes possible to obtain the 
recursion relations of Y for large b, provided the 
trivial fixed point is stable. At a critical point of order 
a we find in leading order in b at T~ that for d > d~ 

Y'(~b 2, ~0)=g,(G)_ a q~(q~2 _ N y  -~ (4.34) 

1,0 

0,8 

0,6 

o,4 

0,2 

d=2,2 

j 

c=2  

d ~3,~ 

d=4,2 

o 4 1'o 2'o ~ b  

Fig .  1. U~4 as a f u n c t i o n  o f  b wi th  62,0--t~2,0"(G) _ _  , , * ( G )  a n d  g(l~ =#l,l*(a) as 
ini t ia l  va lues  a t  b = 1 

in accordance with (3.30) of 1. 
Finally we want to stress that the trivial fixed point 
representation and the non-trivial fixed point repre- 
sentation of the scaling fields are equivalent for 
2 < d < 4  as far as the ordinary critical point is con- 
cerned and one can use that set of scaling fields 
which appears to be more convenient. A non-Gauss- 
ian fixed point does not exist above four dimen- 
sions in case of the ordinary critical point and in any 
dimensions in case of higher order critical points and 
consequently only the scaling fields associated with 
the trivial fixed point are meaningful in these sit- 
uations. 

Crossover and Trajectories 

The phenomenon of crossover is described in the 
renormalization group picture as an effect of fixed 
points of competing stability. In order to analyse 
crossover one needs to know the complete set of 
scaling fields. As for the statics of the model in the 
large-n limit the crossover has already been discussed 
[9]. 
Let us examine the b dependence of the simplest 
dynamic parameter U4, 4 at T~. (As a consequence of 
(4.33) U4, 4 is at the same time proportional to the 

�9 ( a )  ,~ It follows from (4.20), (4.21) linear scaling field ~2,0., 
and (4.30) that 

U 4  I F T *  __ . ( G )  i n . ( G )  
, 4 / ' - ' 4 ,  4 - -  t ~ 2 , 0 / P 2 ,  0 

[-rr(G) / , , * ( G )  A_[,.r(G ) /, ,*(G)'~Zq (1 A- rr(G) / H * ( G ) ] - - 2  (4.35) 
= ~ S l  1//~1 1 ! I -~2 ,0 / /~2 ,0  ~ k N 1 ,  1//~1, 1 ! J , , 

where ,,.(G) denotes the value of the linear scaling 
field associated with the trivial fixed point taken at 
the non-trivial fixed point. Equation (4.35) indicates 
that for d > 4  or in the case of g(~)~ =0  for 2 < d < 4  

(tricritical point) U~,4 tends to zero as b goes to 
infinity. However, if we start from a point of the 
parameter space which corresponds to small, finite 
scaling fields in the trivial fixed point representation, 
(4.35) describes a crossover between the Van Hove 
behaviour and the true critical behaviour. In this case 
for b values near b = l  U~, 4 o'(6)=b2-a-co'(G) i.e., ~ 6 2 , 0  iS2,0 
U~,4 decreases first since the attraction of the trivial 
fixed point is decisive but with increasing b values the 
relevant scaling field g'(~) starts to dominate and 
finally Ug,4---,U~4, thus the non-trivial fixed point is 
reached for b-,oc. In order to characterize the ap- 
proach to this fixed point it is more appropriate to 

i , (6)  use ~2, o- 
Figure 1 illustrates the b dependence of U~,~ at T~ for 
a given initial value in different dimensions both for 
conserved (c = 2) and for non-conserved order param- 
eter: At increasing dimensionalities (for d<4)  the 
approach of the non-trivial fixed point is continually 
slowing down and the tendency ceases at d = 4. In the 
case of a conserved order parameter the initial de- 
crease, i.e., the attraction of the trivial fixed point is 
always stronger then for a non-conserved order pa- 
rameter. 
The knowledge of the scaling fields makes also possi- 
ble to determine the flow lines of the DRG trajec- 
tories in the parameter space. Here we shall discuss 
the subspace spanned by the simplest static parame- 
ter (U~,2) and the simplest dynamic one (U4.~) at T c. 
Due to (4.30) 

U~. 2/UZ, 2 ="(G~ /~ ,  ~G~ 
. /~1 ,1 /  1,1 

- -  [ c t ( G ) / , t * ( G ) ] E I  A- or(G)/ , ,*  (G)~ - 1 (4.36) 
- -  \ ,51,1//-~1,1 I t  • ~ 1 , 1 / / ~ 1 , 1  ! 

From (4.35) and (4.36) the desired relation between 
U~, 2 and U~, 4 can easily be deduced. 
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/ 
/ 

j s  

G 
Fig. 2. Flow diagram for d = 3 at T = Tr The solid and dashed lines 
correspond to the case of the non-conserved and conserved order 
parameter, respectively 

Figure 2 shows the D R G  trajectories in the subspace 
U4, a, U4, 4 in three dimensions for conserved and 
non-conserved order parameter, respectively. The 
flow lines approach the parabola U4,4/U~4 
=(U~,2/U~2) 2 along which they tend to the point 
(1, 1) corresponding to the non-trivial fixed point. The 
origin represents, of course, the trivial fixed point. In 
the case of a conserved order parameter the flow lines 
are steeper before reaching the parabola. Similar 
situations are found also in other dimensions for 
2 < d < 4 ;  with increasing dimensions the flow lines 
are steeper and steeper before reaching the parab- 
ola. 
Finally it is to be noted that the special initial action 
corresponding to a usual Langevin type equation of 
motion (treated in I) is represented by the straight 
line U,~,4=0 on Fig.2. It can be seen that the be- 
haviour in the immediate vicinity of the non-trivial 
fixed point (the large b behaviour) is independent 
from the initial conditions. This is again a manifes- 
tation of universality. 

V. Scaling Variables in the Large-n Limit 

From the general relations derived in Sect. II and 
from the scaling fields deduced in the previous sec- 
tion it is straightforward to determine the scaling 
variables in the large-n limit. 

Scaling Variables Associated 
with the Non-Trivial Fixed Point 

It follows from (2.15), (2.16) and (3.1) that the local 
scaling variables D~,p are obtained as 

D~,,~(x, t) = c~ Y(g; ~(x, t), qb(x, t))/ag~,t~ , (5.1) 

where g~,~ is defined by (4.10). In order to find an 
explicit g-dependence it is convenient to express Y 
from (4.1) and (4.8). Due to (4.13) and (4.14) the 
partial derivative of Y can be given as 

which means according to (4.10) that 

D~,~(x, t)= [Y1,0(~b2( x, t), (p(x, t))] = 

[ro, 1 t),  o(x, 0)3 p 

with dimension 

(5.2) 

(4+ c)c~+2fi, :~= 1,2 .. . .  f i=0 ,1 , . . . .  

Also the scaling product of these variables can easily 
be worked out. From (2.20) 

~2y 
y~ 

D~,,,~,;~,~-c~g~,~,Og~,,~ vg~,~, " 

= Y;.o * 
+ fl Y;,o Y~7 ~ OD~,,p,/O~o; (5.3) 

which gives by (2.19) 

{D,,,z,;~,,}= {D=,z;~, ~,} 

=D~,~(xl, tl)[1 + 6(x 1 - x2) 65(t~ - t2) 

�9 (~Yl.o~O/~r (5.4) 

The corresponding dimension is 

(4 + c)(a + ct') + 2(fi + fl'). 

Finally we note that near the non-trivial fixed point 
the random variables 

Y*~ Y*f cr 1,2,.. fl=0, 1, 1 , 0  - ' "  

i.e., the eigenvalues of the linearized D R G  transfor- 
mation are the local scaling variables as it follows 
also from (4.25). 

Scaling Variables Associated 
with the Trivial Fixed Point 

In this case the local scaling variables are given by 

(G) D ~. r t)= 0 Y (g(~) ; ~)(x, t), ~b(x, t))/Og~ (5.5) 

_(m is defined by (4.28). Now it is convenient where g~,~ 
to express Y from (4.26). Since OS/c~zl=Yo, t and 
3X/~z2 = I71,o we obtain 

(G) (G) OY/Og~,~ = OS/Og~,p 
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which according to (4.28) gives Table 1. 

Exponent Scaling field 

Non-conserved o.p. (c=0)  Conserved o.p. (c=2)  

D~(x, t) 
= [-~71 (~b2(x, t), (D(X, t))]a[-272(~b2(X, t), q)(X, t)] fl (5.6) 

with dimension 

(d+c)~+(d-2)/3, ~=1,2 . . . .  /3=0,1 . . . . .  

The scaling product can be derived similarly as in the 
previous case. 
Close to the trivial fixed point the random variables 

d - 2  glo glo 
d - 4  g u  gl l  
d - 6  glz g2o g12 
d - 8  g13 g21 g13 g2o 
d -  10 gl~ gz2 g30 g14 g21 
d - 1 2  gls g23 g31 gls g22 
d - 1 4  g*6 g24 g32 g40 gt6 g23 g30 

Table 2. 

Exponent Scaling field 
(d = 3) 

Non-conserved o.p. (c = 0) Conserved o.p. (c = 2) 

(p~(q~2 - N y ,  c~=1,2 . . . .  fl=O, 1 .... 

are the local scaling variables as it follows also from 
(4.32). 
The set of scaling variables obtained is complete in 
the sense that any local random variable which is 
given by a power series in qb 2 and q0 can be expressed 
as a linear combination of the scaling variables D~,~ 

/-I(G) o r  ~a,/~" 

VI.  S u m m a r y  and D i s c u s s i o n  

2 g~ gN 
1 g~ g~ 
0 g~ g~ 

-2 g~ z~ g~ 

-4 g~ g~ g~ ~16~ g~ 

We have determined here the complete set of scaling 
fields and scaling variables in a non-trivial dynamic 
model. Both the trivial and the non-trivial fixed point 
representations have been worked out. 
The difference whether the order parameter is con- 
served or not is clearly reflected in the scaling fields. 
From Table 1 which gives the hierarchy of scaling 
fields associated with the non-trivial fixed point, the 
following properties can immediately be seen: for a 
conserved order parameter the exponents of the dy- 
namic scaling fields are smaller (in absolute values 
larger) than the corresponding ones in the other case. 
There are scaling fields sharing the same dimension- 
ality. The degree of this degeneracy is smaller when 
the order parameter is conserved. As for the scaling 
fields associated with the trivial fixed point there is 
only one scaling field belonging to one exponent in 
general. If however, the dimensionality of space is a 
rational number degeneracy may occur. In d = 3  we 
obtain the hierarchy indicated on Table2. From 
(4.29) one sees that in the case of a conserved order 
parameter is the attraction of the trivial fixed point 
stronger, provided we start from its vicinity. This fact 
may play an important role in crossover phenomena 
also in systems with a finite n. 
Let us shortly compare the scaling fields and scaling 
variables resulting from static and dynamic calcu- 
lations, respectively. As it has been demonstrated the 
manifolds {gl,~} and (m {&,,} are subsets of the parame- 
ter space the elements of which transform among 

themselves and are of purely static character. The 
scaling fields g~,~ and ~,~,~#m correspond to the scaling 
fields obtained by a direct static calculation [9] in the 
non-trivial and the trivial fixed point representation, 
respectively. 
As for the scaling variables those associated with g,,~ 
turn out to be t ~+1 with dimension 2+2/3 in the 
static calculation [3] where the function t(q52) corre- 
sponds to Yo. l(q ~2, 0) in our notation, while the result 
of the dynamic calculation is DI,~=Y~,oY~I with 
dimension 4 + c + 2 f i .  Furthermore it can be shown 

,,(m in a static that the scaling variable associated to s~,~ 
calculation is z ~ + 1 with dimension ( d -  2) (fi + 1), 
where the function z corresponds to z2(0, z2), whereas 
the dynamic calculation gives D]G~ =zlz~2 with dimen- 
sion d + c + ( d -  2)/3. Thus we conclude that two types 
of scaling variables can be associated with the static 
scaling fields when the dynamics of the system is also 
considered. 
As it has been derived in I by a direct calculation and 
here within a more general framework the deviation 
of Y' from its fixed function can be expressed for 
large b at T~ as the product of the scaling field with 
the leading exponent and the corresponding eigen- 
vector of the linearized transformation. This can be 
traced back to the fact that there is only one scaling 
field which belongs to the largest exponent. Similar 
behaviour is expected also when the number of 
components of the order parameter is finite. 
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Appendix: The Evaluation of (2.4) 
in the Large-n Limit 

After separating the fields according to (3.5) the 
"'action density" (3.1) reads 

A = A o +  L {-~),L~,+i~J(~j-aLAdp,)} 
j = l  

+ y(~e + ~ ,  ~o + 4), 

Ao= ~ {-4,iL4j+i6j(gb-aLa4))}, 
j = l  

where 

(A.1) 

q~=-i ~ ~L4j+(n/'2)FV 1 E ld (A.2) 
j =  1 k < A/b 

< a=-i ~ SjL~j+(n/2) FV-, Z kC. (A.3) 
j = 1 A/b < k < A/b 

Here we have used the fact that terms like 4 q~, 4 ~,. . .  
etc. are to be neglected in the large-n limit, as it has 
been shown in Sect. IV of I. 
According to (3.6) Y is expanded in terms of 0 
- (O)b.  In leading order 

y((]~2 47 (~2 (.to _1_ (~)= y((]52 _~_ (~2 (~ ~t_ <(~)b) 

-t- ]70,1 (0 2 -}- ~2, (p _}_ <(P)0  [(~ -- <(P>b l '  

with I7o,1 defined by (3.7). Thus W, (2.1), becomes a 
simple Gaussian distribution in ~ and different aver- 
ages can easily be calculated. In terms of Fourier 
components we obtain that 

(~)j,k,o,~j_~,_~o>b=i([~.k,~o[2g(k, co))b/(2FU), (A.4) 

where A/b < k < A, and 

g(< m)-- im + rk~(ak ~ + go, 1(r + &', ~0 + (0)b))- (A.5) 

After integrating over ~ the following new term 
arises in the exponent of W 

- ~ I~j.k,o,121g(k, oo)t:/(4_rkq, 
A / b < k < A , o  

apart from an unimportant constant. Then the ex- 
ponent is expanded in powers of q~2-(q~2)b and 
according to (3.6) one may keep only the leading 
term. A lot of new terms appear but several of them 
cancel if 

(~o)b=(n/2)FV -1 ~ U 
A / O < k < A  

_ V-1 ~ (1/2) (f~koJa)b 
j ,A /b  <k <A,a) 

" rk~( ak2 + I7o, 1((1 ~2 -~- ( ~ 2 ) b ,  Q) ~- <(~)b)) (A.6) 

holds�9 We shall verify this equality only later but use 
it at this point already to simplify the calculation. 
Finally we obtain in the exponent: 

/ 2 A'=Ao+Y-YI ,o \ f )  )b 
-Yo, l(~o-(,/2)rv-' • kc>b 

A / b < k < A  

_ V-J ~ (1/2)l~a.k~,] 2 
j ,A /b  <la < A,a~ 

�9 {D2+F2k2C(ake+YoO2]/(2Fkc)-Yl,o}, (A.7) 

where the functions Y, Y~. o, u ~ have in their argu- 
ments 0 2 + (~2)b and (p + (0)b.  It has been used here 
that (]5 2 and qo can be considered as nearly constant 
quantities since their deviation from the mean is 
small. 
According to (A.7) 

([4,k,~ol 2)~ = 2FkC(co2 + 1-2 kec(a]r + Yo, ,)2 
- 2 L , o r k  c) *. (A.S) 

In the large-n limit 

(d?2)b=(X/2)r -~ ~ (l~j,~,ol2)b. (h.93 
j ,A /b  <k <A,  o9 

The expansion in terms of q3 2 - (~2)b applied to (A.4) 
gives in leading order 

= i(I 4k, o~l a)b g(k, co)/(2FkC), (A. 10) 

where g is defined by (A,5) but now with (~2)b 
replacing (~2. It follows from (A.3), (A.8) and (A.10) 
that (A.6) is a correct assumption. The integration 
over ~ yields a new term in the exponent of W and 
finally the action associated with the small wave 
number components can be written as ~ddx dt(A o + w) 
where 

w = Y -  L , o ( ~ ) b  

A 
-- Yo, i(~o--(n/2)F ~ dkKakC+a-*)v 

A/b 

+(n/4rc) i dkKa k~ 7 de~ (A.11) 
A/b - oo 

with the same argmnents of Y and of its derivatives as 
in (A.7). Differentiating w one obtains 

~ W / ~  ) 2  = Y 1 . 0 ( 4  2 -}- (~2}b ,  q0 -}- ((~)b), (A.12) 

O~'V/a(~) = g0,1 (~ D2 -]- ( ~ 2 ) b ,  (J 9 + ((P)b)" (A. t  3) 

After introduclng new scales according to (2.4) from 
(A.6), (A.8), (A.9) and (A.12), (A.13) we recover the 
transformation rule (3.9)-(3.12) where a and F are 
chosen to be unity. 
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