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Scaling hypothesis and a renormalization group procedure are formulated in the vi- 
cinity of the bifurcation point, where the behaviour is governed by inhomogeneous 
fluctuations. The working of the general ideas is illustrated in a model system in which 
the number of components of the complex order parameter field goes to infinity. 

I. Introduction and Summary 

Similarities and differences between phase tran- 
sitions and instabilities occuring far away from ther- 
modynamic equilibrium have extensively been dis- 
cussed in the literature (see [1,2] and references 
therein). In this paper we are interested in hard 
mode instabilities leading to homogeneous limit cy- 
cles from this point of view. It is assumed that the 
transition is of similar type as a second order phase 
transition, i.e. the order parameter changes con- 
tinuously at the bifurcation point (normal Hopf  bi- 
furcation). We consider continuously extended sys- 
tems containing inhomogeneous fluctuations, and 
our purpose is to study the behaviour in the vicinity 
of the bifurcation point where a region analogous to 
the critical region of second order phase transitions 
exists. 
At the phenomenological level we formulate a scal- 
ing hypothesis for the correlation and the response 
of the slowly relaxing unstable mode which is a 
generalization of the dynamical scaling hypothesis 
[-3, 4] near ordinary critical points. It is then shown 
how a renormalization group transformation can be 

* An account of this work was reported at the Eighth In- 
ternational Seminar on Phase Transitions and Critical Phenom- 
ena (MECO), Saarbriicken, FRG, March 23-25, 1981 

defined to substantiate this scaling hypothesis and 
whose properties also in other respects resemble 
those of the dynamic renormalization group (for re- 
cent reviews see [-5, 63) near ordinary critical points. 
An additional feature is that the condition of criti- 
cality now yields, besides the critical value of the 
control parameter, the fluctuation correction to the 
frequency of the limit cycle at the bifurcation point, 
too. 
Besides discussing such general ideas our aim in this 
paper is to demonstrate their working in a model 
system. In searching for a suitable model we recall 
that in ordinary critical phenomena the limit when 
the number of components of the order parameter 
field goes to infinity [7] has provided a useful 
theoretical framework for general investigations [-8- 
163 . An analogous situation is expected in the pres- 
ent case, too. For the construction of such a model 
it is a basic fact that a wide class of hard mode 
instabilities has been pointed out to be describable 
by a T D G L  type equation for a complex order 
parameter field [,,17-19,2] which is more general 
than the usual one in the sense that its parameters 
are also complex numbers. Thus e.g. Kuramoto and 
Tsuzuki [17] have found that an adiabatic elim- 
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ination of the stable modes in the Brusselator results 
in such a generalized TDGL equation for the slowly 
relaxing critical mode. The effects of noise in this 
equation have also been considered [20, 21] and 
dynamic renormalization group calculation has been 
carried out by Hentschel [201 for the case when the 
dimensionality of the system is close to four. His 
formulation leads to a scaling behaviour which is 
similar to that at tricritical points. 
We shall consider the m-component version of the 
afore-mentioned model which corresponds to a situa- 
tion where m modes become simultaneously unstable 
at the bifurcation point. The simplifying features 
arising in the limit m--, oo make explicit solutions 
possible. Thus in the postbifurcational region an 
"equation of state" will be deduced which gives both 
the amplitude and the frequency of the limit cycle. 
The correlation as well as the response functions 
will be determined both in the pre-bifurcational and 
in the post-bifurcational regions. It will be shown 
that the results fit in with the general predictions of 
the scaling hypothesis. 
The renormalization group transformation becomes 
also tractable in the large-m case and the transfor- 
mation of the parameters in an invariant subset of 
the parameter space can be followed in a global 
way. Moreover the non-linear scaling fields [22] can 
also be determined. We shall illustrate that at the 
bifurcation point a stable finite fixed point can be 
achieved by means of our procedure. The connec- 
tion between the renormalization group procedure 
and the form of the scaling hypothesis will also be 
demonstrated. 
The paper is organized as follows: The scaling hy- 
pothesis and the suggested renormalization group 
procedure is introduced in Sect. II. Section III con- 
tains the explicit solution of the generalized TDGL 
model in the limit m ~ oo, while Sect. IV is devoted 
to the application of the renormalization group 
method. Some details of the renormalization group 
calculation are presented in the Appendix. 

II. Scaling Hypothesis 

We are going to study a normal Hopf bifurcation: 
for control parameter values 2<2~ the system has a 
homogeneous steady state while for 2>2c a homo- 
geneous limit cycle with frequency olc(2 ) is ap- 
proached asymptotically. The amplitude of the limit 
cycle is considered to be the order parameter which 
sets in continuously when 2 goes through its critical 
value. Let Ok(t) denote the slow mode dominating 
the behaviour of the system around the bifurcation 
point (k and t denote wave number and time, re- 

spectively). The instability occurs at k = 0. We define 
a correlation function by 

C(k, t)=(~)k(t)Ok(O)) , k=~O, (2.1) 

where, and in the following, bracket denotes average 
taken in the asymptotic state of the system (reached 
for t ~  oo) and bar denotes complex conjugation. 
Contrary to equilibrium transitions or more general- 
ly speaking to soft mode instabilities, in the vicinity 
of a hard mode transition point the imaginary part 
of the frequency of the slow mode does not vanish, 
thus a new characteristic quantity enters the theory. 
To account for the new features we generalize the 
dynamical scaling hypothesis [3, 4] postulating the 
following form for the correlation function (2.1) near 
the bifurcation point: 

C(k, t) = exp [/co o (2) t] k-  2 + n C(k 4, k z t), (2.2) 

where ~ocl2-2c] -v is the correlation length in the 
asymptotic state, t/ and z stand for the critical ex- 
ponent of the equal time correlation function at 2 
=2  c, and the dynamical critical exponent, respec- 
tively. The hypothesis includes the following proper- 
ties for the function 0)0(2): real, independent of k 
and t and equal to the frequency of the limit cycle at 
the bifurcation point, that is co0(2c)=c%(2c). If such 
an 0)0(2 ) exists it is not unique since it is determined 
by (2.2) only up to an additive term proportional to 

Depending on the analytic properties of O)o(2 ) and 
its relation to c%(2) we can distinguish the following 
cases: 

Case A: oo0(2 ) does not have any of the special 
features listed under cases B-D. 

Case B: We can choose 

c00(2)=c%() 0, for 2>2c. (2.3) 

Case C: There is at least one particular Oo(2 ) that is 
analytic at 2 c. 

Case D: Both requirements under B and C can be 
satisfied simultaneously with the same coo(2 ). 

Let us now discuss how it is possible to define a 
renormalization group (RG) procedure supporting 
the scaling hypothesis introduced above. In general 
starting with the original slow variables, Ok(t), one 
will not find any finite stable fixed point after re- 
peating the transformation since an extra relevant 
scaling field appears due to the presence of an en- 
larged parameter space in systems exhibiting limit 
cycle behaviour as compared to that  of occuring in 
case of ordinary critical phenomena. The appear- 
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ance of an extra relevant scaling field was pointed 
out first by Hentschel [20] in a generalized T D G L  
model with complex parameters near four dimen- 
sions. In order to handle this situation we suggest 
the following method: We change variables by the 
transformation Ok(t)---~k(t) exP(- icot) ,co real, and 
then at a particular choice c0=f2(2) it will be pos- 
sible to eliminate the extra relevant scaling field in the 
whole critical region. At the same time the require- 
ment of a finite fixed point determines 2c and the 
frequency of the limit cycle at 2~. Applying the usual 
RG arguments one obtains for the correlation func- 
tion (2.1) of the original field variables a form like 
(2.2) with f2(2) as 0)o(2 ). In addition, since the RG 
transformation is expected to be analytic, f2 will be 
also analytic around 2r obeying the requirement 
of "case C". If "case D" can not be fulfilled it does 
not exclude the possibility that for one choice coo 
obeys "case B" while for an other one coo obeys 
"case C". This possibility arises because on the basis 
of the RG procedure one expects that 

O ( 2 ) - c % ( 2 ) = B r  -~, for )~>2~, (2.4) 

where B is a constant. 
In Sect. IV we shall illustrate the working of this 
RG procedure on the model obtained when the 
number of components of q5 goes to infinity. 
Finally a remark is in order on the response func- 
tions. Knowing the equation of motion of the slow 
mode one can formally introduce an external field 
coupled to 4)k(t) and define a response function, 
G(k, t). In general, the fluctuation-dissipation theo- 
rem is not valid in such systems thus an indepen- 
dent scaling hypothesis is to be formulated for this 
function as follows 

G(k, t )=k  p exp [- icoo(2)  t ] O(k~, kZt), (2.5) 

where ~, z and COo(2 ) has been defined in (2.2) and p 
represents the critical exponent of the response func- 
tion. 

where a is a complex parameter, 

I~bl 2 =(1/2) ~ IqS,[ 2, (3.2) 
l = l  

(the factor 1/2 has been introduced for convenience) 
and the function r(l~b[ 2) is expressed as a power 
series 

r(lr 2) = ~ u2~(21~12) ~- 1. (3.3) 
o~=l. 

The coefficients u2~ are complex. We shall use the 
notation for complex numbers z: Re z = z ~1) and Im z 
= z  (2). It is assumed for the real part of u2 that 

u(2~) = 2 o -  2, (3.4) 

and u(2 z) and all the other u2~-s  are considered to 
be independent of the control parameter. 2 o is the 
critical value of the control parameter which would 
be obtained by a linear approximation of (3.1) and 
Fu~ 2) represents the frequency of the limit cycle at 2 0 
in the same approximation. To keep terms of powers 
up to infinity in (3.3) is required by the RG  treat- 
ment (see Sect. IV). 
The complex noise ff is assumed to be a Gaussian 
white noise with zero mean value and correlation 
functions as 

((j(x, t) r t')) =4r•(x-x')  (}(t--t')bjj,, (3.5) 

( ~ )  = ( ~ ) = 0 ,  (3.6) 

where F is a real constant, the same as in (3.1), 
where it was separated from the other parameters 
for convenience. 
We will be interested in the many component limit 
(m ~ o0) which, similarly as in the theory of ordinary 
critical phenomena [8-16], will provide a simple but 
non-trivial model. In order to find terms which are 
of the same order of magnitude for m ~ o e  in (3.1) 
u2, is assumed to be of order m 1-~. For  the dimen- 
sionality of the system 2 < d < 4 will be assumed. 

IlL The m-Component Model. Solution for m-~ 

We generalize the T D G L  model with complex pa- 
rameters [17-21, 2] for m-component complex fields: 
~bl, ~2 . . . .  q5 m, assuming isotropy in the component 
space. The general form of the equation of motion 
to be studied is the following in coordinate repre- 
sentation: 

~j(x, t)= -F(-aV2+r(lOIZ))Oj+~j(x, t), (3.1) 

Solution for 2 < 2 c 

Since m is large and [qS[ 2 is a sum of m terms, the 
relative fluctuations of IqS] 2 are small, thus r(lqS[ 2) in 
(3.1) can be replaced by r(N), where N denotes the 
average value of IqS[ 2 in the stationary state. Thus we 
arrive at a linear equation of motion which in terms 
of the Fourier components q~j. k and ~j, k reads 

q~j, ~(t) = - ~k q~, k(t) + (j, k(t), (3.7) 
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with 

~ = V ( a k  ~ + r (N)), (3.8) 

where N is to be calculated self-consistently. 
In order to determine the stationary distribution we 
use the path probability introduced by Onsager and 
Machlup [23-25, 2]. The Lagrangian associated with 
equation (3.7) is given by 

L(q~, ~b) =(4F) -  1~  [q~s, k + ak ~bj, k[ 2. (3.9) 
k,j 

Graham showed [26] that for a linear process of the 
stochastic variable q, the conditional probability 

can be expressed as P(q, tlq~ 

where the Lagrangian, L(q, q) is to be integrated 
along the most probable path with boundary con- 
ditions q( z=t )=q ,  q(z=O)=q ~ Applying this meth- 
od for the process related to (3.9) we get 

P({~bz k}, t[ {qS~ k}, O) 

oc exp { - ~ @)[4)j,k -- d?j~ e-%'lg/[2F(1 - e-  2~,,)3}. 
k,j 

(3.10) 

The stationary distribution is generated by the limit 
t--+ oo : 

P~t ({~bj, k}) ~ exp { -- ~ a(k 1) Iq~s, ~12/(2v)}. (3.11) 
k,j 

This shows that the stationary distribution is com- 
pletely determined by the real part of r(N). As a 
consequence the equal time correlation function in 
the steady is obtained as 

([Oj, klZ}=2(k2+r(1)(N)) -1 , a(1)= 1. (3.12) 

Hence the self-consistency equation 

N = (1/2) ~ (Iq~skl 2) --m ~ (k 2 "-}- F(1)(N))- 1 
k , j  k 

A 
= m ~ (k z + r(U(N)) - 1 d a k/(2u)a (3.13) 

0 

is found, where A is the cut-off in the wave number 
space. At the critical point the relaxation rate of ~j,o 
vanishes. Consequently if we denote r([qS] 2) and N at 
the bifurcation point by r~([~b[ 2) and No, respectively, 
it follows from (3.7) and (3.8) that r~l)(N~)=0 should 
be fulfilled. This makes straightforward to calculate 
Nr from (3.13): 

N~ = m K  a A a- 2/(d - 2), (3.14) 

where Ka(2u) d is the area of the d-dimensional unit 
sphere. The condition r~l)(N~)=0 determines the 

critical value of the control parameter as 

L ,(1)/'9 AT ~ -  (3.15) 2c = 2o + ~2~, ~ w l, 
~=2 

while the frequency of the limit cycle at 2c is given 
by 

O~tc(2c) (2) (2) ~ u2~ (2Nc) . (3.16) =Fr~ ( N c ) = F u  2 + F  (2) a -1  
r 

Note the deviations as compared to the results ob- 
tained from the linearized version of Eq. (3.1), i.e. 2 0 
and Fu  (d), respectively. 
Subtracting (3.14) from (3.13) one finds in the vi- 
cinity of the bifurcation point ( r ~  z) for 
2 < d < 4 :  

N - N c  = - [r(~)(N)IA] el2- 1, (3.17) 

where 

A 1 a/Z=mKa ~ Xd-3(1 +X2) -1 dx. (3.18) 
0 

Let us introduce the quantity ~ by 

=_ [r(1)(N)/A] - 1/2, (3.19) 

which can be interpreted as the correlation length in 
the steady state (see (3.12)). After similar steps as in 
the case of critical statics of the large-n system 
[9, 10] one gets the solution of the self-consistency 
Eq. (3.13) for 2 close to 2 C 

N - N~ = ( 2 -  Zc)/i(1)(N~), (3.20) 

where the notation 

f(lqSI 2) = dr(ICol2)/d 1412 (3.21) 

has been introduced. From (3.17), (3.19) and (3.20) v 
= l / ( d - 2 )  is found. (Compare it with the spherical 
model result, see [12].) 
By means of (3.10) and (3.11) the following ex- 
pression is obtained for the correlation function in 
the stationary state 

C(k, t) = (~s, ~(t) ')s, A 0)) 

2 Jexp ( -  ~k t), t > O, 
(3.22) 

kZ+r~  [exp (~k t), t<0 .  

Introducing formally a complex external field hi(t) in 
the equation of motion (3.1) as an additive term Fh s 
on the right hand side, one finds for the response 
function 

G(k, t ) = F  exp ( -  % t), t>O (3.23) 
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and G(k, t ) -O for t<0.  It is easy to check that the 
fluctuation-dissipation theorem is not fulfilled by 
(3.22) and (3.23) as expected. 
From Eqs. (3.22) and (3.8), (3.19) it is obvious that 
the scaling hypothesis (2.2) is valid in the large-m 
case with COo(~ ) =Fr(Z)(N) for 2 <2c. 

Solution for 2 > 2~. The Frequency of the Limit Cycle 

We shall see that in the post-bifureational region a 
stationary distribution in the limit t--* oe exists for 
the fields 0j defined as 

(a j (x , t )=~j(x , t )exp(- ic%t) ,  j = 1 , 2  . . . .  m, (3.24) 

where o)t~ denotes the frequency of the limit cycle. 
We start by assuming the existence of this stationary 
distribution and the consistency of this assumption 
will be shown a posteriori. The order parameter of 
the system is the amplitude of the limit cycle, in 
general a complex m-component vector. However, 
we can always choose the order parameter to point 
in the direction of the j = l  axis and to be real by 
making use of the isotropy of the system in the 
component space and the gauge invariance of the 
equation of motion (3.1), respectively. We again for- 
mally introduce a constant external complex field, h, 
coupled now to the j =  1 component. Then the equa- 
tion of motion for 0j is as follows 

~j= - F ( - a l 7 Z  +r(lOl2)-icotjF ) Oj+Fhbj, 1 +~j 

(3.25) 

We separate the order parameter 7 j by writing 

0r (x ,  t) = t) + ( 0 ) )  = 0. (3.26) 

It will turn out (see (3.35)) that 7 ~ is of order m 1/2, 
therefore when calculating [Ol 2 defined like in (3.2), 
the term 7~(~'1+~'t) can be neglected as compared 
to terms of order m, and thus we can use the ap- 
proximate equality 

[~12 = 10'12 + ~2/2. (3.27) 

Let N' denote the average value of [~,[2 in the 
asymptotic state. Then it follows from (3.2), (3.24) 
and (3.27) that the average value of [qbl z is given as 

N = N ' +  7Jz/2. (3.28) 

Finally we use the fact, that [~'[1 can be replaced by 
N' in the large-m limit. After these steps we arrive at 
an equation of motion for components j > 2  the 
Fourier transform of which is of the same form as 

(3.7) with ek replaced by 

c( k = C (ak z + r(N) - iogtJF), (3.29) 

where N is defined by (3.28). 
Therefore it follows from (3.11) that the stationary 
distribution of ~9) is fully determined by r and 
that the equal-time correlation function of O),k is 
given by (3.12). As a consequence of it we obtain in 
the vicinity of the bifurcation point that 

N' = Nc-  [r(1)(N)/A] a/z- 1 (3.30) 

with A defined by (3.18). 
Furthermore from the equation of motion of ~] the 
following condition is found for a stationary so- 
lution 

h/7 j = r(N' + 7/2/2) - ie)~c/F. (3.31) 

It can be considered as a complex "equation of 
state". Its real part determines the order parameter, 
7 j, while the imaginary part yields the frequency of 
the limit cycle. From the real part of (3.31): 

r(1)(N ' + T2/2) = h(1)/T. (3.32) 

Note the similarity between (3.32) and the ex- 
pression of the transverse susceptibility of ordinary 
critical phenomena ) ( r I = H / M  (M: magnetization, 
H: external magnetic field). 
Since h has been formally introduced, the relevant 
solution of (3.31) corresponds to h=0.  Then from 
(3.30) and (3.31) 

r(t)(Nc + 7~2/2) = 0. (3.33) 

Let us define x by the requirement 

r(1)(x) -- 0 (3.34) 

and suppose x to be unique. The order parameter 
can be expressed as 

7 j = _+ (2(x - Nc)) ~/2. (3.35) 

In order to find an approximate expression for x 
near the bifurcation point, we expand the function 
r(1)(y) around y=N~ and take it at y=x .  Assuming x 
- N  c to be small we get 

x = N c - r (1) (N~)/f ~1) (N~), (3.36) 

where i has been defined in (3.21). Since r(1)(Nc)=2c 
-)~, which follows from (3.3), (3.4) and (3.15) the 
expression (3.35) yields 

OC(• - -  2c) 1/2 

for 2>2~ and kg=0 for 2<2~. 
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From the imaginary part of (3.31) we obtain for h 
=0  

03l~ = Fr~E)(x) . (3.37) 

Using (3.36) Fr(Z)(x) c a n  be expressed near the bifur- 
cation point as 

Vr = V ?2)(N~) -r~:r(1)(N~) 

= F rtZ)(N~) + F ~c(2- 2~), (3.38) 

where 

~c = i (2)(Nc)/i")(Nr , (3.39) 

i.e. the frequency of the limit cycle is a linear func- 
tion of the control parameter. 
It is easy to calculate by means of (3.22), (3.23) and 
(3.29) the correlation and response functions of 
~),k(j>2) and to deduce from them the correlation 
and response functions of the original field variables 
~bj, k(j>__2 ) in the asymptotic state of the system. We 
give here as an example the correlation function: 

C(k, t)=exp(i03~ct)2k -2 e x p ( - F S k 2 t ) ,  t>0 ,  (3�9 

where 03~ is determined by (3.37)�9 

Scaling Functions 

First we note that the definition of x by (3.34) can 
be extended also in the pre-bifurcational region and 
x is expressed in terms of the parameters of the 
model in the same way here as for 2>2c. Con- 
sequently, close to the bifurcation point relation 
(3.36) remains valid also for 2 < 2  c (r(1)(N~) is positive 
in this region). 
Thus we can define a frequency 

03 0 ()') = F r (2) (x), (3.41) 

which in the post-bifurcational region coincides with 
the frequency of the limit cycle (see (3.37)). Note that 
(3.38) is valid both above and below 2c and shows 
that (3.41) is analytic at 2c. 
Expanding r(~)(N), r(Z)(N), rCZ)(x) around N~ and 
using (3.36) one finds in the critical region 

r ~ z) (N) - r ( Z ) ( x )  = tr r (1) (N), (3.42) 

with tc given by (3.39). Substituting it into (3.8) and 
(3.22) we obtain a scaling form (2.2) with 03o(2) as 
defined in (3.41). Moreover using (3.19) the scaling 
function can be cast into the following form 

C(k~, k 2 t) =2(1 + A ( k ~ ) -  2)- 1 

�9 e x p [ - F ( 8 + ( 1 - i ~ c ) A ( k ~ ) - 2 ) k 2 t ] ,  2<2~. (3.43) 

As for the critical exponents t/= 0, z =2. Comparing 
(3.37), (3.40), (3.41), (3.43) one can see that in the 
large-m limit the scaling hypothesis (2.2) can be re- 
alized in its most stringent form ("case D"). A simi- 
lar statement is valid for the response function (with 
p=0).  Though by this reason (3.41) is the most at- 
tractive choice for 030(2 ) it is worth noting that this 
is not the only possibility. As mentioned at the end 
of the previous subsection 03o(),)=Frt2)(N) can be 
taken for 2 < 2  c. With this choice one can at best 
achieve a scaling form corresponding to "case B"  or 
"case C" depending on what is taken as 03o(2) for 
2 > 2  c. 

IV. RG Procedure 

The RG transformation is defined by eliminating the 
field variables ~bjk(t ) with large wave numbers, i.e. 
with k values between A/b and A and by an appro- 
priate rescaling [27, 5, 6] ( b > l :  parameter of the 
RG, A: cut-off). For a more complete definition see 
the Appendix�9 
After performing the gauge transformation 
qS~--,qSjexp(-i03t) in (3�9 we arrive at a similar 
equation 

(oj(x, t )= - F ( - a V 2 + s ( l ( o l 2 ) ) ( ~ j + ~ ( x ,  t), (4�9 

where 

s(l~b[ 2) = r(lqS[ z) - i03/F. (4�9 

Applying the RG transformation to such an equa- 
tion of motion a great number of new parameters 
are generated, because the vertices become random 
variables (see 1-15])�9 It turns out, however, that the 
parameters F, a 2 and #=(u  2-i03/F, u 4 . . . .  ) specified 
by the form of the starting equation of motion (4.1), 
transform among themselves in the large-m limit. In 
order to illustrate the general ideas introduced in 
Sect. II it will be sufficient to consider these parame- 
ters only, since the other ones are expected to be 
irrelevant in the RG sense. 
We relegate the details of the calculation to the 
Appendix and give here only the resulting recursion 
relations 

s'(I q~l 2) = b 2 s(b 2-a Q + N~), (4�9 

a' = b - " a ,  (4�9 

F'=b-2+"+Z F, (4.5) 

where 
Ab 

Q=lcp l2 -gc  + m  S [(q2+s(1)(l~,bl2))-l-q 2] 
A 

�9 ddq/(270 d. (4.6) 

From (4.4) and (4.5) ~/= 0, z = 2 follows. 
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One can see that #(1) ~.~_('U(1)2, u(41), ...) forms an ad- 
ditional subset the elements of which transform 
among themselves. Since the stationary distribution 
is specified by r (1) (see (3.11)) we call these parame- 
ters steady state parameters. In addition the recur- 
sion relation of s ~ coincides with that of the spheri- 
cal model studied extensively in the literature [9- 
11]. Thus the steady state scaling fields can be de- 
terminated by taking over the method applied there. 
Let us consider the inverse functions of s(1)(]q~12), 
and s'(1)(l~bl2): 

Ir =f(s (1)) =f'(s'(1)), (4.7) 

where f '  denotes the transformed quantity. From 
(4.3) 

b 2.e Q + N~ =f(s'(1)/b 2) (4.8) 

is obtained. 
It follows from a result obtained by Ma for a re- 
cursion like the real part of (4.3) that the non-linear 
scaling fields g~ associated to the non-trivial fixed 
point are generated by the series [11, 12] 

1q512= - ~ e(g~+a*)(s(1)) ~-1, (4.9) 
~ = 1  

where a~-*-mKa(-1) ~ Aa-2~/[~(d-2~)] .  The ex- 
ponent of g, is 

y~=d-2c~,  a = l , 2  . . . . .  (4.10) 

Let us turn to the imaginary part of s. Expanding 
the right hand side of (4.3) in a Taylor series around 
N~ and considering the ratio of the real and imag- 
inary parts in the limit b ~  oe, we find at the fixed 
point 

This relation indicates that the Taylor coefficients c a 
defined by 

s(2)(f(z)) = ~ c#z # 
#=o 

are scaling fields. Using (4.7) and (4.9) we obtain the 
equation determining them 

s (2) - ~ a(g~+a*)(s(1)) ~-1 = c#(s(1)) ~. (4.14) 
~=1 #=0 

The corresponding exponents are 

y a = 2 - 2 f l ,  fl=0, 1, 2 . . . . .  (4.15) 

It is seen that there are two relevant scaling fields c o 
and g~ with exponents 2 and d - 2 ,  respectively. A 
scaling field like gt appears also in the spherical 
model (gl will be related to 2 c - 2  ), thus the extra 
scaling field mentioned in Sect. II is c o. In addition, 
besides a and F, a new marginal scaling field, cl, is 
present in the large-m case. 
Finally we give explicit expressions for the most 
important scaling fields. Let x denote the special 
value of I~12 where r(1)(x)=s(1)(x)=O at a given 2 
(see (3.34)). It immediately follows from (4.9) that 

g~ = N - x ,  (4.16) 

1 (inK eA a- ~ 1 ) 
g2-----~ \ " ~  ~:(l~x ) . (4.17) 

Using (3.36), in the vicinity of 2~ (4.16) takes the 
form 

g~ = ( L -  2)//'('(N3. 

Substituting gl, g2 into (4.14) and using (4.2) one 
obtains 

s* (2)(1q512) = Ks*(1)(lqSl2), (4.11) 

where ~c has been introduced in (3.39) and s*(1)(Iq~l 2) 
is determined by the equation 

O:3 

I~12 =No - m  S [(q2 +s,(1)([q~12))- 1 _q-Z] daq(2rc)-e. 
A 

(4.12) 

We have used the fact that a finite fixed point can 
be achieved only if s(Nc)=0 a t 2 =  2 c. 
Since ~c contains the original parameters, Eq. (4.11) 
exhibits a non-universal behaviour in the model. 
In order to find the nonlinear scaling fields generat- 
ed by s (2) we substitute (4.7) and (4.8) into (4.3): 

s'(Z)(f' (s'(1))) =b a s(2)(f (s'(1)/b2)). (4.13) 

c o = r(2)(x) - co/F, (4.18) 

c 1 = i(2)(x)/i(1) (x). (4.19) 

At 2 = 2  c gl must vanish thus from (4.16), (4.19) and 
(3.39) it follows that at the bifurcation point cl=~c. 
The presence of this marginal scaling field explains 
why the fixed point (4.11) is non-universal. Note also 
the non-universal form of the scaling functions: they 
depend not only on a 2 but also on ~ (see for exam- 
ple (3.43)). 
The results obtained for a general r([qS[ z) can be cast 
into explicit forms if we start with 

r (I ~bl 2 ) =u 2 + 2u 4 Iq~[ 2, (4.20) 

where u] 1) is assumed to be positive in order to 
ensure the stability of the asymptotic state. Namely 
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the scaling fields g~ are as follows: ga=(2~ 
-2)/(2u?)), gz=mKdAd-4/(Z(4--d))--(4u(4~)-~, g~= 
--a* for ~ > 2. Only two of the scaling fields ee will 

_,~2)/,,~1) and  C0~---/~/(2)--L/(21)C 1 be non-vanishing: c 1 - ,  4 / ,~ 
- -  c o l E .  

In accordance with the general scheme introduced in 
Sect. II the requirement co=0  fixes the value of the 
parameter co of the gauge transformation. Denoting 
it by f2(2) we obtain from (4.18) that 

0(2) = rr(2)(x). (4.21) 

In the particular case when r(lqSI 2) is given by (4.20) 
0(2) reads 

(2 (2) = F [u  (2) - -  u(21) ( )[ ) ~4"(2)/'/~4-'(1 )-IA. (4.22) 

After eliminating c o only one relevant scaling field 
g~ is left which is related to the correlation length 
characterizing the asymptotic state of the system. 
Furthermore the RG is well-behaved near the finite 
fixed point and hence the scaling forms (2.2) and 
(2.5) follow. 
The expression (4.21) of 0(2) is exactly the same as 
that of coo defined in Sect. III (see (3.41)) so the 
properties found there also apply for f2(2). One ex- 
pects on general grounds that 0(2) is analytic at 2~, 
which in our case is explicitely shown by the ex- 
pression (3.38) valid near the bifurcation point. Thus 
the RG analysis of the large-m model demonstrates 
that the RG procedure introduced in Sect. II can in 
general lead to "case C" of the scaling hypothesis. It 
is a specific feature of the large-m system, however, 
that for 2>2~ f2(2) coincides with the frequency of 
the limit cycle, co~c (see (3.37)) and consequently even 
"case D" is actually realized. 

Appendix. The RG in the Large-m Limit 

In order to describe the dynamic renormalization 
group it is convenient to use the response field for- 
malism [28-32] and then the transformation is to be 
carried out on the path probability functional W 
= e x p J .  For the action associated to Eq. (4.1) we 
obtain in the large-m limit: 

J = J o + I d t S d d x  

�9 ~, (1 /2)( -r~sc)s+rK)s( lr  , (1.1) 
Lj~ J. 

where c.c. denotes complex conjugation, q~(x, t) re- 
presents the m-component complex response field, 
furthermore 

J o = f  dt l dex 
ttl 

[s~l{Fl~.il2--(1/2)(()s(dpi-aFV2~)i)+c.c.)}] (1.2, 

and 

A 
K = K d ~ k 'l- ~ dk. (A.3) 

0 

When calculating averages by means of the path 
probability W{q~, ~b}, integration is to be performed 
over qS} 1), r iq~}l)and iq~}~. 
Note that the dependence on qSj in J - J 0  appears 
only through the combination 

q) (x, t) - (F/2) ~, ( - q5 s ~bj + K). (1.4) 
j = l  

The RG transformation is defined by integrating the 
path probability over field variables with wave num- 
bers in the shell A / b < k < A  and by a rescaling of 
the remaining variables. The new action is deter- 
mined by the equation: 

e x p f = l  I~ d()}~,oddp}2,~,~ .-(1) .-(2) d(t4)s, k, o) d(*4)s, k, co) 
j , A [ b < k  < A , o  

exp  Jl~(x, t ) ~  b l - n / 2  d / 2  ( a ( x / b ,  t / b  z )  " (A.5) 
4~(x,  t ) ~  b - l + n / 2  - a /2  ~ ) ( x / b ,  t / b  z )  

Here the quantities with subscripts k, co stand for the 
Fourier components of the field variables. 
Before turning to the calculation let us discuss first 
the structure of the parameter space. If we start with 
(A.1), after the RG transformation an infinite num- 
ber of new couplings arise in the new action, which 
are non-local in space and time. We shall see below, 
however, that a sufficiently broad parameter space is 
kept in the large-m limit if the following action is 
considered 

J = J o  + ~ dt ~ ddx Y(l~b] z, ~o, (~), (A.6) 

where Y denotes a real valued function, ~0 is defined 
by (A.4) and ~o and ~5 are considered as independent 
variables. Causality [31, 16] requires that 

Y(lqSI ~, 0, 0) = constant, (A.7) 

where the constant will be chosen to be zero�9 The 
derivatives of Y, namely 

Y~,o-~Y/~I~I 2, Yo, x-~Y/Ogo, 
I11, 1 =-c3e Y/(~? 1412 ~?q~) (A.8) 

will play an important role in what follows. 
The form of (A.6) remains unaltered after the R G  
transformation, indicating that the parameters speci- 
fied by Y transform among themselves, i.e. they form 
an invariant subspace of the full parameter space. 
Using the expression (A.6) means that we treat only 
that part of the action which contains coupling local 
in space and time. 
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The parameters specified by Y can be further divided 
into different groups. A comparison between the 
results of the RG applied directly on the equation of 
motion and those of the present formulation leads 
to a similar conclusion as in [16-]. Parameters speci- 
fied by Yo, l(]~b[ 2, 0, 0) give the averages of the ran- 
dom vertices arising in the equation of motion, 
while the complementer set of parameters are re- 
lated to the second or higher order cumulants of the 
random vertices. (Note that Yl,0(lqSI 2, 0, 0 )=0  due to 
(A.7)). It will be demonstrated that the group of 
parameters specified by Yo, l(]qb[ 2, 0, 0) is itself also 
an invariant subset within the parameter space 
specified by Y(]0] 2, 0, 0). An even smaller subgroup 
of the parameters is defined by the real part of 
Yo,~(1012,0,0), i.e. by Yo(~l ([~b[2, 0, 0). These parame- 
ters will be called steady state ones and they trans- 
form again among themselves. 
Finally it is to be noted that for the action decribed 
by (A.1) 

Yo, 1(14q 2, o, O)=s(lOI2)=r(14~le)-io~/F 
and the recursions discussed in Sect. IV are given for 
this subsection of the parameter space. 
In order to perform the multiple integral (A.5) the 
fields are decomposed into two parts 

q~j --' 0j  + 4~, c~j + qSj + ~j, (A.9) 

where qS; and q~j on the right hand side involve only 
wave numbers smaller than A/b, while q~; and qSj 
contain the large wave number components. In the 
large-m limit cross terms like ~. q~j~j are negligible 
as compared to ~, q~j 0~. Consequently we can write 

IqSlZ--*lqSI2 + [q~l e , r ~q) + ~b. (A.10) 

Since [q~]2(~b) is a sum of m terms and m is large the 
relative deviation of it from (]~]2)b((~b)b) is small, 
where ( ' " ) b  denotes the average over field variables 
with wave numbers between A/b and A. Thus Y(]0] e 
+l~l  e, cp+~, 0 + ~ )  in (A.6) can be replaced by the 
first few terms of its Taylor series expanded in po- 
wes of (b--((b)b , ~3--(~)b and [612-(1612)b reduc- 
ing the multiple integral (A.5) to Gaussian integra- 
tions. The calculation is a straightforward general- 
ization of that followed in [16], therefore we shall 
skip the intermediate steps (the interested reader will 
find some more details in the Appendix of [16]) and 
jump directly to the recursions obtained for the 
quantities Yo, 1, 111, o defined by (A.8): 

g;, o(14~lL q,, O) 
=b  4 171, o(b2-a Q +Nr b-dR, b-aR), (A.11) 

Y~, ~(14,r ~o, ~) 
=be Yo, 1 ( b2-a Q +Nc, b-dR, b-e/~), (A.12) 

where Nc is given by (3.14) and 

Q = [q~[2 + b d- 2 ((62)b _ N~) 

= I~b[ 2 -Nc+m i ( S-1 - -q-  2), 
q 

R=q)+bd((O)b 

= ~o -(m/2) i {(q2 + y~!~)) S-1 _ 1}, 
q 

with 

(A.13) 

(A.14) 

S =  Lt,/ v [ ~ 2  A_ V r ( 1 ) ~ 2  m,o, l j  _2.,1, a (A.15) 

and 

A b  

i =- Kd ~ dq qd-1 (A.16) 
q A 

Since F does not transform it have been set equal to 
unity. 
It follows from (A.7) that Y~,o([qSI2,0,0)-0, con- 
sequently (see (A.14), (A.15)) R = 0  if q0=0, thus the 
function I7o, l([~b[ 2, 0, 0) specifies an invariant subset 
of the parameter space as stated above. 
Expanding the right hand sides of (A.11) and (A.12) 
in a Taylor series around (N~, 0, 0) we find as con- 
ditions for the existence of a finite fixed point as 
follows. 

Yo~)l(uc, 0, 0)= 0, v(2) (N~, 0, 0)= 0 ~ 0 , 1  

should be fulfilled at the bifurcation point. These 
requirements specify the values of two parameters in 
Y at the bifurcation point, namely that of the con- 
trol parameter and that of the parameter of the 
gauge transformation. The latter one fixes the value 
of the frequency of the limit cycle at 2 c. Then we 
find the requirements Q ~ 0  and (YI, I(Nc, O,O)R 
+c.c.)--,0 in the limit b ~ o %  which yield for the 
fixed point expression of functions Yo(~l, and t71, o the 
equations as follows: 

]qbl2 = n  _m7 ((S,)- ~ _q-2)dd  q(2zc)-d, (A.17) 
A 

(1 +i~c) q)+(1 - iK)  0 
oo 

=rn5 {(q2+ y~,?))(S*)-I-1} ddq(27z) -a, (A.18) 
A 

where 

S*~--[(q2q-Y, *(1)'12 2Y* ql/2 
0 , 1  ! - -  1 , 0 d  , 

and 

(A.19) 

~ -  r~,q (N~, 0, 0)/Y#~(N~, 0, 0). (A.20) 
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Comparing the real and imaginary parts of (A.12) 
for b --* oo one obtains 

I4'*o, (12) = x I1o*, ~i). (A.21) 

Equations (A.17)-(A.21) determine the fixed function 
Y*. It is, however, not a universal expression since 
appears in it. An other interesting property of Y* is 
that besides IqSI 2 it depends only on the combi- 
nation (1 + i~:) q) +(1 - itc) qS. 
Finally we note that when (0=(~=0 from (A.18), 
(A.t9) I11, o = 0  follows and (A.17) and (A.21) go over 
to equations (4.12) and (4.11), respectively. 
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