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H6non's map with dissipation is suspended to the  nonlinearly kicked damped harmonic 
oscillator and then quantized. The ensuing master equation between two subsequent 
kicks is solved exactly in the representation by the Wigner distribution, resulting in a 
quantized version of H~non's dissipative map. The semi-classical limit of the map is 
studied. The leading quantum corrections are shown to be associated with dissipation 
and can be formulated as a classical map with classical stochastic perturbations. The 
next-to-leading quantum corrections, arising from the nonlinearity of the kicks, are sim- 
ilar as in the area conserving map and cannot be described within the framwork of 
classical statistics. The Wigner distribution in the steady state is investigated in the limit 
of strong dissipation, where H6non's map is reduced to the logistic map. The insensi- 
tivity of the main results against details of the quantization procedure is demonstrated 
by comparing with the results of a different phenomenological quantization procedure. 

1. Introduction 

The analysis of chaos in dissipative dynamical sys- 
tems has been greatly advanced during the last de- 
cade by the study of one- and two-dimensional dis- 
crete return maps (cf. e.g. [1, 2]). Among these the 1- 
dimensional logistic map (cf. [3]) and a 2-dimen- 
sional dissipative map first introduced by H~non [4] 
have been particularly important, since they have 
been found to capture many generic features of re- 
turn maps in realistic physical systems. 
More recently, the study of quantum systems whose 
classical counterparts exhibit chaotic dynamics has 
also attracted a great deal of interest. Again the 
study of quantum systems described by discrete-time 
maps has been found to be fruitful [5-7]. While so 
far most studies of quantum maps have been con- 
cerned with quantum versions of classical 2-dimen- 
sional area conserving maps [5, 6] very recently the 
study of quantized two-dimensional dissipative, i.e. 
area contracting, maps has also been started [7]. 
However, the effects of quantization on dissipative 
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maps have so far been considered in detail only for 
a particularly simple but somewhat artificial exam- 
ple - the two-dimensional Kaplan-Yorke map [8]. It 
is therefore of great interest to study also quantized 
versions of more realistic 2-dimensional maps, most 
notably the dissipative H~non map and extensions 
of it. This is our aim in the present paper. The Hd- 
non map is of particular interest not only because it 
arises under certain conditions as the most general 
quadratic map with a constant Jacobian [2], but 
also because it contains the logistic map as an im- 
portant special case in the limit of strong dissi- 
pation. 
At the present time, our main motivation for a study 
of quantized versions of this map is the desire to 
elucidate the fundamental limitations which are im- 
posed by quantum theory on chaotic behavior on 
sufficiently small scales. However, we believe that 
this study is also of a more direct physical relevance 
because of the natural appearance of the H~non 
map or similar maps in some dissipative quantum 
systems. For instance, single mode lasers cf. [9, 10] 
are quantum versions [11] of the Lorenz model [12] 
which in some respect is similar to the H6non model 
[13]. Electron storage rings have also been modelled 
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by the H6non map or similar maps [1, 2]. Quantum 
effects and dissipation in these systems are impor- 
tant and intrinsically related: E.g., in lasers dissi- 
pation occurs essentially due to spontaneous emis- 
sion into the modes of the vacuum, while quantum 
effects arise primarily from spontaneous emission 
into the laser mode. In electron storage rings dissi- 
pation occurs due to spontaneous emission of synch- 
rotron radiation which gives rise to fluctuations of 
the electron beam by a statistical back reaction ef- 
fect. In the latter case these effects are usually de- 
scribed classically [14] but at sufficiently large en- 
ergies the condition of validity for the classical de- 
scription [14] seems to be violated, and the fluc- 
tuations due to synchrotron radiation must then be 
treated quantum mechanically. A quantized version 
of the H6non map may, therefore, serve as a reason- 
able phenomenological model which captures the es- 
sential features of dissipation and quantum fluc- 
tuations in systems with chaotic behavior in the 
classical limit. 
The manuscript is organized as follows. In Sect. 2 
the quantization of the H6non map is prepared by 
first performing a suspension of the classical map to 
a continuous two-dimensional but non-autonomous 
flow. This flow can be physically interpreted as a lin- 
ear damped harmonic oscillator which is kicked pe- 
riodically by a force depending on the amplitude of 
the oscillator [2]. In Sect. 3 the suspended system is 
quantized, which leads to a master equation govern- 
ing the statistical operator of the kicked oscillator. 
In Sect. 4 a quantized form of the original map is 
obtained by exactly solving the master equation be- 
tween two subsequent kicks. In Sect. 5 semi-classical 
limits of the map are studied. In the appendix a dif- 
ferent phenomenological quantization of the H6non' 
map is performed and the dependence of the results 
on changes in the quantization is exhibited. 

2. Kicked Oscillator with Damping 
and H6non's Map - Classical Description 

We shortly summarize how the time-continuous mo- 
tion of a kicked damped harmonic oscillator leads 
to the discrete dynamics of a dissipative H6non map 
in the classical description [2]. For  later con- 
venience, we represent the equation of motion of the 
kicked oscillator in the form 

x =  - T x + p ,  

{ ) = - T p - c o Z x +  ~" 8 ( t - n z ) f ( x ) ,  (2.1) 

where 7 denotes the damping constant and co is the 
eigenfrequency. The position dependent amplitude of 

the kicks which are repeated with period z is given 
by an arbitrary function f(x).  The conservative part 
of this motion is associated with the time-dependent 
Hamiltonian 

H = � 8 9  ~ 6(t--nz)~(x) ,  (2.2) 
n ~  -- oo 

where ~(x) stands for the integral of f (x) :  ~'(x) 
=f(x). 
Our aim is now to derive a stroboscopic map relat- 
ing position and momentum immediately after two 
subsequent kicks. The equation of motion can be 
easily solved between kicks, and one obtains the re- 
lation 

Y% + a = E Cx ,  + ESp,/co, 

f), + 1 = - ogESx, + E Cp, 

with 

(2.3) 

E =  exp(-Tr) ,  C =  cos(coz), S=sin(coz) (2.4) 

which connects the state variables after the n th kick, 
denoted by x,, p,, with those just before the (n + 1) th 
one, denoted by 2,+j,  P,+I. As there is no discon- 
tinuity in the position but one in the momentum the 
stroboscopic map is given by 

X n + l  = X n + l ,  

p.+l =~.+1 +f(x.+d. (2.5) 

By introducing a new variable y through 

'( I) y = - -  - p +  x +  f ( x  (2.6) 
(i) S 

the stroboscopic map can be rewritten as 

x,  + 1 = 2 E Cx ,  + E S f  (x,)/co - Ey , ,  

y,  + ~ = Ex , .  (2.7) 

This is a map of the form 

x,+ 1 = x~ l(x, ,  Y,) -- f (x,) - Ey , ,  

__ 0 Y,+I - Y,+ I (x,, Y,) =- Ex , ,  (2.8) 

where the relation 

f (x) = ~ S  ( f  (x) - 2 E C x) (2.9) 

has been used. Equation (2.8) is of the same general 
type as H6non's map. The continuous flow described 
by (2.1), therefore, induces stroboscopic maps of 
H6non's type, and is, thus, a suspension of such 
maps. The connection between the extra variable y 
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and the momentum could be scaled with some arbi- 
trary power of E leading to corresponding changes 
in (2.8), too. The present choice, however, turns out 
to be most convenient when describing the semi- 
classical results obtained in the limit of strong dissi- 
pation. Note that the Jacobian, E 2, can take only 
positive values for all maps with the suspension (2.1). 
A typical choice for f can be 

f (x)  = c(1 - a lxl z) (2.10) 

with positive parameters a, c and z. For z-=2 
H6non's map is recovered. It is worth noting that if 
the kick amplitude f is of order unity, in the strong- 
ly dissipative limit 7z~0 ,  E ~ 0 ,  the map (2.7) de- 
scribes a rapid relaxation to a fixed point. However, 
it is possible to overcome the effect of strong damp- 
ing and to obtain a nontrivial dynamics also in this 
case if the amplitude f (x )  is scaled with E -1 as de- 
scribed by (2.9). 
For the sake of simplicity we shall henceforth 
choose z according to ~or=2n(k+�88 with k integer so 
that 

C=0 ,  S = I .  (2.11) 

There is still a complete freedom in the choice of k. 
Thus, for sufficiently large k very small values of E 
can be obtained with the restriction (2.11), too. On 
the other hand, by letting the damping constant 7 go 
to zero E increases up to unity. The value of the 
Jacobian of the model, therefore, may vary between 
0 and 1. 
Finally, we note that there are infinitely many con- 
tinuous systems leading to the same stroboscopic 
map since the latter contains merely a part of the 
information of the continuous dynamics. Thus, for 
example, maps of H6non's type can also be obtained 
from the kicked free motion. Consequently, many 
unequivalent suspensions exist in general. Quanti- 
zation, defined for continuous classical flows, re- 
quires the choice of a particular suspension of the 
original map. The non-uniqueness of suspensions, 
therefore, corresponds to a non-uniqueness of quan- 
tizations. Here we shall use the suspension Eq. (2.1). 

3. Quantization of the Kicked Oscillator 
with Damping 

Since there is damping acting on the kicked oscil- 
lator (2.1), we have to apply the quantum theory of 
dissipative systems. Damping occurs because a sys- 
tem interacts with another very large system, called 
the heat bath. The complete quantum mechanical 
description of this coupled system contains much 

more information than we need. Therefore, the rele- 
vant quantities are those of the original system, 
which remain after the heat bath variables have been 
eliminated by taking the trace of the total density 
matrix over the subspace of the heat bath variables. 
Thus, one obtains a reduced density matrix p which 
gives the complete quantum mechanical descriptiorl 
of the subsystem of interest, i.e. the kicked oscillator. 
The precise form of the density matrix may depend 
on the intensive parameters of the heat bath, like its 
temperature, and on the type of the coupling be- 
tween the subsystem and its surroundings. 
It is convenient to use creation and annihilation 
operators for the oscillator: 

1 ^ 1 
a= 2]~(cox+ifi),  a + - ~ - - ( o o ~ - i l 3 ) ,  (3.1) 

where 2 and /3 stand for the position and momen- 
tum operators, respectively. The Hamiltonian of the 
conservative part of motion is the quantized version 
of (2.2): 

fI=hooa+ a - ~ g~( t -nz)~(]~2~(a+a+) ). (3.2) 
n =  - -  o o  

The interaction of a harmonic oscillator with a heat 
bath has been extensively studied [9, 15, 16]. If the 
coupling of the oscillator to the heat reservoir is 
chosen to be 

Itin t = ~ (aR~- + a + Ri) (3.3) 
i 

where R i are bath operators, one obtains under the 
usual assumptions of weak coupling and a Mar- 
kovian reservoir [15] the master equation for the re- 
duced density matrix p in the form* 

0p i 
- [I2I, p]+y{(l+i~)([ap, a +] 

Ot h 

+[a, pa+])+~([a+ p,a]+[a+,pa])}. (3.4) 

The quantity g denotes here the average thermal 
quantum number of the free harmonic oscillator at 
the temperature T of the heat bath: 

g = (exp(he)/k B T) - 1)-1. (3.5) 

We shall suppose that the frequency of kicks is rath- 
er low: coz>>l (i.e., k>>l). Then, as a first approxi- 
mation the master equation (3.4) can be kept wi th /~  
as given by the time-dependent operator (3.2). 

'~ The validity of this form of the master  equation is restricted to 
weak damping 7 ~ o  and to temperatures T>>h/k~. For recent 
work on the low temperature regime T<h~/k B cf. [17] 
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Similarly as in the classical description, the evolu- 
tion of the density matrix between two kicks is given 
by that of the unperturbed oscillator. The effect of 
kicks then results in a jump of the density matrix. 
Around a kick t~nz, the commutator [H,p] domi- 
nates the right hand side of (3.4). In a vicinity of this 
point the equation can be integrated leading to 

p(t) = U(t, t')p(t') U+(t, t') (3.6) 

with the unitary operator 

i idr/-}(~)), (3.7) U(t,t')= Texp ( - ~  ,, 

where T denotes time ordering. For t-~n~+O, t'-+nz 
- 0  only the a-function contributes, thus 

(3.8) 

The change of the density matrix owing to the kicks 
is, therefore, 

P(nz+O)=exp[~f , (~2~(a+a+))]  

i h + ')] {3,, 
It is often convenient to use a representation of the 
density matrix in terms of a quasi-probability densi- 
ty. Among them the Wigner function turns out to be 
most useful. The Wigner function W(x,p,t) is de- 
fined as [18, 9, 15] 

W(x,p,t)=~2d--~qhexp(-iP~)lx+q p ( t ) x - q ) .  

(3.1o) 

By means of the general correspondence between the 
density matrix and creation and annihilation oper- 
ators on one side, and the Wigner function and 
complex numbers on the other side, one finds a c- 
number equation describing the time evolution of 
the Wigner function [19] which for W(x,p, t) can be 
written as: 

a W ( x , p , t ) = - ~ (  Ot Ox - ?x + p) W -  P ( -  gP-co2x) W 

+h  ?_co ff+~ +o)2 W. (3.11) 

Note that this equation is of the form of a Fokker- 
Planck equation with the classical equations of mo- 
tion as drift terms and with a diagonal diffusion ma- 

trix of intensity 2h7(g+ 1/2)/o). Different functional 
forms of the coupling to the reservoir may influence 
the type of the diffusion matrix similarly to the 
classical case. This is yet another source of non-un- 
iqueness in the quantization of maps, which is spe- 
cial to dissipative maps (cf. Appendix). 
Since the amplitude of the kick depends only on the 
position, it is particularly easy to describe the effect 
of a kick in coordinate representation. From (3.9) 
and (3.10) one finds 

W (x, p, n z + O ) = ~ 2d~ff h exp [ - i P~ + s @, (x + q) 

- ~ ( x - q ) ) ]  ( x +  2 p(n~-O)x-q2).  (3.12) 

In order to obtain an explicit solution it is useful to 
treat the generating function 

4(~,~,t)=jdxdpexp[i(~x+~p)]W(x,p,t). (3.13) 

The dynamical equation for r is a first order differ- 
ential equation: 

{')(5 ) +h?  g + ~  +cot/2 q~=0 (3.14) 

which can be solved by the method of characteris- 
tics. Thus, between kicks, one obtains 

~b(~, q, t) = exp [ k  (ff+~) (~2 + co2r/2)(e- 2 '~-  t) ] 

"40(e- ~'(~ cos cot L COtl sin cot), 

co-a e- ~'(~ sin cot + co~ cos cot)), (3.15) 

where C)o(U,V ) denotes the initial distribution. Using 
(3.12), (3.13) the effect of kicks can be expressed as 

q)(~,~hnz+O)=~dxexp[i~x+~@(x+?) 

From the definition of the characteristic function 
and (3.10) it follows that 

^, , d { ' d x  [ ,~  
4(~, ~,nz +O)= J ~ exp [ i tg -~ ' )x  

This shows that a kick induces a nonlocal transfor- 
mation of the characteristic function. 
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By means of (3.15) and (3.17) the characteristic func- 
tion, and, consequently, also the Wigner function, 
can be constructed at any time, i.e. the quantum 
mechanical description of the kicked oscillator is 
complete. 

4. The Quantum Map 

Like in the classical case, the stroboscopic map is 
taken immediately after the kicks. Our aim is, there- 
fore, to relate the Wigner function after the (n+ 1) th 

kick, W,+I, to that after the n th kick, Wn. 
We start by deriving the recursion relation for the 
characteristic function. The periodicity is chosen in 
such a way that (2.11) is fulfilled. Then, it follows 
from (3.15) that the characteristic function, ~,+1 just 
before the (n+ 1) th kick reads 

~n+l (~, t]) = exp [ ~  (ff+~) (1 --E2)(~2 + 0)2 t/z)] 

" ~)n( - . E 0 3 ~ ,  E(D - 1  ~). (4.1) 

By means of (3.17) the complete map can be written 
as 
qb . . . .  d~ 'dx 

,+~t;, r/j = j ~ G(  -Eco  r/, Eo) -~ r 

[ �9 exp[ i ( (~-  ~')x + rlf(x))] exp - ~  g + ~  (1 - E  2) 

"(~.'2+092t12)]exp[~(g(x+q~h2 ) -Y , ( x -~@ )  

 42/ 
where it should be recalled that f(x)=g'(x). One 
may easily interpret the different exponential fac- 
tors under the integral on the right hand side of 
(4.2). The first one is the kernel of the classical map 
according to the deterministic dynamics. The second 
factor represents the quantum correction due to 
dissipation, while the last factor denotes a quantum 
corretion caused by the non-linearity of the kicks. In 
the typical case of a smooth kick amplitude f (x)  it 
can also be seen that for small values of h the third 
factor is of order /i 2 in the exponent and, therefore, 
negligible compared to the second factor, i.e. the 
dissipation, if present, dominates the semiclassical 
limit (cf. also next section). 
After having found the map for the characteristic 
function one can easily transform it to the Wigner 
function itself. Taking the Fourier transform of (4.2) 
we find that the map is nonlocal and of the form 

W~+~(x,p)=~dx~dp~K(x,p,x~,p~)W,(x~,pn). (4.3) 

The kernel can be expressed as 

K(x,p;x,,p~)=y e x p [ - i d ( x  0 - ~,,+, (x~ ,  p . ) )  
t ~z) 

-Zrl(p -p,+l(Xn, p,,, x))] exp hQ 

" exp[iG(x, 17, h)], (4.4) 

where we introduced the abbreviations 

E2 1 - E  2 ho9 

C(x,~, )=~ 

Furthermore, 0 x,+ l (x,, p,,) denotes the classical value 
of the x variable after the (n+ 1) th kick expressed in 
terms of xn, p,, in particular with the choice (2.11): 

o =Eco-lpn, while -0 G+l(X,,G,x) is defined as Xn+l  

po+ 1 (x,, p,, x) = - coEx, + f(x)  (4.6) 

which differs from the classical recursion only by the 
fact that the argument o f f  is not x,+~ ~ but rather the 
variable x of the Wigner function W,+ 1. The first 
factor in the integrand of (4.4) is again the classical 
part which would give K(x,p;x, ,G)=6(x o - x , + l )  cS(p 

0 0 -p ,+ l ) ,  where p,+~ denotes the classical momentum 
after the (n+ 1) th kick (cf. (2.3)-(2.5)). For finite h the 
function is no longer localized at the classical values 
but there is a broadening due to dissipation (second 
factor) and non-linearity (third factor). The integra- 
tion over ~ can always be performed in (4.4) leading 
to 

/s p; x,,, G) = ~ 2 ~ !  

09 0 2 [ ] 
. S ~ e x p  dr/ [_iq(p_fO+l(x,,p, ,x) ) 

hQo~ 
2 tl2]exp[iG(x'tl'h)]" (4.7) 

Equations (4.3), (4.7) give the complete quantum map 
for the kicked oscillator with damping. 
The quantized version of the map (2.8) is obtained 
from the above results by eliminating the momen- 
tum p in favour of the variable y introduced by (2.6). 
Denoting the Wigner ffmction in the x, y representa- 
tion by W(x, y) we find 

W~+l(x,y)=~dxndy, K(x,y;x,,yn) Wn(x~,yn) (4.8) 

with the kernel 
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093 ~i/2 
K(x,y;x,,  y,)= \2~hQ] 

O) 

" ~2~z j" dr/exp [itlo)(y -y~ ., y,)) 

hQco ] 
2 172 exp[iG(x, tl, h)]. (4.9) 

The quantities o o x,+~, Y,+t are here the classical val- 
ues after the (n + 1) th step expressed in terms of x,,  y, 
(see (2.8)). Note that the quantum map depends on 
the three additional parameters h, co, (2 beyond 
those already contained in the classical map. The 
appearance of the frequency co is caused by the spe- 
cial choice of the classical suspension. The parame- 
ter (2 is due to finite temperature effects. Even more 
parameters like S or C of Eq. (2.4) would have ap- 
peared had we not chosen z in such a way that C 
vanishes. 

5. Semiclassical Limits 

The kernel (4.9) cannot be evaluated exactly, in gen- 
eral. In the limit of small h, however, explicit ex- 
pressions can be found. For smooth kick amplitudes, 
i.e. for a smooth function j~ (and, consequently, also 
for a smooth f, cf. (2.9)), the quantity G defined by 
(4.5) can be expanded as 

G(x,l~,h)=h 2~3('0 i ['(2j+2)(x] ~ 2t, (5.1) 
4E-  j= o -  " " (2/+3)!  

where fu~ denotes the jth derivative of f For  small 
h we can approximate G by 

G(X,/~, k) ~ ~2 f (2)(x)~ t/3. (5.2) 
24E 

The integral over t/ can then be performed in (4.9) 
and we obtain 

K(:,,u;:,~ ~2~hQ! ( h ~ ) l ]  

�9 exp[-2@~Q(X-X~ ] 

. exp [31~ Q3EZco 4QEco o ] 
(f(2,(x))2 + ~ (Y - Y, +1 (x,, y,))] 

+ ~ )  \haf<2)(x)! J' 

where Ai(z) stands for the Airy function [20]. Even 
though h was assumed to be small, we did not as- 
sume ho)~kBT. Therefore, Q has not been expanded 
in powers of h. 
Equation (5.3) represents a semiclassical approxima- 
tion for arbitrary functions f However, it follows 
from (5.1) that for polynomial kick amplitudes of de- 
gree less than four (5.3) is the exact quantum 
mechanical expression. This class contains two im- 
portant cases: that of the original H~non model [4] 
and that of a cubic map related to the Duffing oscil- 
lator [21]. (Another exact result can be obtained for 
the piecewise linear map introduced by Lozi [22]. 
Then, of course, the expansion (5.1) is not valid.) 
The conservative limit can be easily taken in (5.3). 
For E ~ I  (Q~0) one finds 

0 (. 8(,02 ~1/3 
K(x, y; x,, y,) = ~ (x - x, +1 (x,, y~)) \h21 f<2~(x) l ] 

[ 0 { 8~ ?'1 
" Ai [(y-y,+l(x,, y,)) \h2f<Z>(x)! j. (5.4) 

This result is qualitatively similar to that obtained 
by Berry et al. [6]. Note, however, that by applying 
their expression to maps of H6non's type a kernel 
different from (5.4) is obtained because they used an- 
other classical suspension. The limits h--*0, of course, 
coincide. A comparison of (5.3) and (5.4) shows that 
dissipation causes a broadening of the kernel in the 
x direction. 
Another, more phenomenological, semiclassical ap- 
proximation can be performed in the dissipative case 
by neglecting G(x, rl, h) entirely (a first order calcu- 
lation in h). Then, only Gaussian integrals remain in 
(4.9) and we find 

co [ ~,) _x.+1(x., y.))2 K ( x , y ; x . , y , , ) = ~ e x p  - 2 ~ { ( x  o 

+ (y -yo+l(x., y.))2}], (5.5) 

which is of the same form as the classical transition 
probability in a classical noisy system. On this semi- 
classical level employing the Wigner function in the 
description, the quantum effects in the dissipative 
map, therefore, appear as effective classical noise. 
The same result has been found in other dissipative 
systems [7, 11]. We note that a similar interpre- 
tation of Eq. (5.3) in terms of classical noise is not 
possible because of the presence of the Airy func- 
tion, which assumes negative values in some regions 
of its domain. As a consequence of (5.5) the quan- 
tum map becomes equivalent to a noisy recursion 
(x,, y ,~  x,+ l, y,+ 0 which can be written in the form 
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0 x x~+l = x . + l ( x . , y . ) +  ~ ,  

y.+l = yO+,(x,, y~ + ~ .  (5.6) 

The noise forces ~,~(Y~ are found from (5.5) to be inde- 
pendent Gaussian noise terms with mean zero and 
correlation functions 

~ -  h(1 - E 2 )  coth (~ hk~T) 3~ m. <{x(y){x~y3) = 6"'m- 203 

(5.7) 

Note that for h-+0, T fixed, they represent thermal 
fluctuations with intensity k~T03 2 ( 1 - E  2) which are 
associated with the dissipation by the classical fluc- 
tuation-dissipation theorem. The independence of 
the random noises ~ ,  {Y is a consequence of the spe- 
cial choice of the period z of the kicks which led to 
(2.11). This illustrates that noisy recursions giving 
the semiclassical description of a dissipative quantum 
map are, in general, cross-correlated. 
In the strongly dissipative limit, E ~ I ,  of (5.6) 0 Yn+ l 
and Ey~ are negligible. The first equation describes 
then a one-dimensional map with noise: 

x~+,=f(x~)+~, <(~)25 = ~  coth . (5.8) 

Thus, all results known for 1 - D  noisy maps [23] 
can be applied. The instability arising if trajectories 
leave the basin of the chaotic attractor and tend to 
infinity can be avoided by making the kick ampli- 
tude bounded for large values of x. In the case of 
quadratic dependence a possible renormalization is 

[  _x2 t f(x)=c ~1 t +ex4 ! (5.9) 

with e of order unity. In this way instability can be 
avoided also at finite dissipation. 
In the conservative limit both noise terms of (5.6) 
disappear and the classical result is recovered, which 
is consistent with the fact that (5.5) becomes the pro- 
duct of two delta functions in this limit. This shows 
that for dissipative maps, in contrast to conservative 
ones, there are two different levels of semiclassical 
approximations. The higher one (O(h2)) agrees with 
the usual semiclassical description for conservative 
maps. At finite dissipation, however, the quantum 
corrections already show up on a lower level (O(h)). 
Here the system becomes equivalent with a classical 
noisy map, the noise intensity of which depends also 
on h and can be described by a noise temperature 

T N = h03(g+ 1/2)/k B. (5.10) 

The quantum mechanical feature shows up also in 
the fact that the probability density associated with 
(5.6) plays now the role of a Wigner function, and, 

therefore, when calculating average values of mixed 
products, the specific rules for the Wigner function 
[18] are to be used. 
In the second part of this section we give an approx- 
imate calculation for the Wigner distribution around 
the classical strange attractor. It will be assumed 
that the function f(x) specifying the classical dy- 
namics has a single maximum and the parameters in 
(2.9) are chosen in such a way that the recursion 
generates chaotic motion. First, we recall that the 
invariant manifolds of a fixed point in the map (2.8) 
can be written as x=f*(y/E) where the multivalued 
function f *  is a solution of the equation [24]: 

f* = f  -Egf  *-*. (5.11) 

f , - 1  denotes the inverse of f* .  Since a one-piece 
strange attractor is the closure of the unstable ma- 
nifold of a fixed point the corresponding solution 
provides an analytic description of the shape of the 
strange attractor. For  strong dissipation an approxi- 
mate solution is possible in powers of E 2 and the 
result may be interpreted as an approximate form 
for the branched manifold of the system. 
The first quantum correction can be taken into con- 
sideration by writing 

y=Ef* l(x)+hl/2u, (5.12) 

where u measures the deviation from the closest 
branch of the branched manifold at a given order in 
E. In the presence of quantum fluctuations x is close 
to but not exactly equal to f*(x,), therefore, we ex- 
pand the exponent of the kernel (5.5) up to second 
in x,- f*-l(x) .  We may write 

x = f *  (x,) - f* ' (x , )  (x,, - f *  -1 (x)) + O ((x, - f *  - 1 (x))2). 

(5.13) 

After inserting this in (5.5) the exponent reads 

co [ ( r , ,2 ,  x .  2 _ f , - 2  2hQ [ ' J  t n) -{-E +O(hl/2))(Xn (X) 

(uf  *'ix~ - E u.l + 0 < / 2 )  ] 
--  o (h l /2 ) )2  -1- h f ~ n ~ ~  ]"  (5.14) 

Note that for vanishing f*'(xn) the u-dependence dis- 
appears. This is related to the fact that the variable 
u defined by (5.12) describes fluctuations in the y- 
direction. A more realistic ansatz would assume de- 
viations locally perpendicular to the branches of the 
strange attractor. Just around the extrema of f *  
these would extend in the x-direction. F o r  strong 
dissipation, however, the strange attractor of (2.8) is 
practically parallel to the x-axis except in a tiny 
neighbourhood of the points where f*'(y/E)=O. 
Thus, we may use (5.12) except in a small vicinity of 
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the extremal points of f* .  In the following calcu- 
lation, therefore, f*'(x,,)~O will be assumed. 
In order to find an explicit expression for the distri- 
bution in u we take the limit h--+0. Thus, 

g(x,u;x.,  u.)= 6(x . -  f*-l(x))lf*'(x.)l -~ 
�9 h-l12 coi/2(2rcQ)-ll2(1 + E2/f*'Z(x.)) -1/2 

[ co (u- , )?~2/ f~(x , ) )a ]  (5.15) 
�9 exp [ 2Q 1 +E2/f * 2(x,) J" 

The first factor shows that the dynamics in the x- 
direction is classical. This reflects the fact that the 
stationary probability distribution along the branch- 
es of the strange attractor will not be qualitatively 
changed by the quantum noise. There is, however, a 
qualitative change perpendicular to these branch- 
es. 
We restrict our attention first to the extremely dissi- 
pative case. The chaotic attractor is then specified 
by f*(x)=f(x)  for x in the interval enclosed by the 
first and second image of the maximum point of 
f(x) under the map x,+ 1 =f(xn).  By integrating (4.8) 
with (5.12), (5.15) over y, we find for the reduced 
Wigner distribution W (x) = S d y W (x, y): 

W.(z) (5.16) 
Wn+l (x)= 2 I f ' ( z ) l  " 

z e  f - l ( x )  

Equation (5.16) is of the form of the Frobenius-Per- 
ron equation [25, 3]. The stable stationary solution 
of (5.16) is, therefore, the invariant distribution 
W~l(x ) of the one-dimensional map x,+l=f(x,).  In 
general, one may write 

W.(x, y) = h -li2 P.(u I x) W.(x), (5.17) 

where P,(ulx) denotes the conditional quasi-probabil- 
ity density for finding a value u under the condition 
that the value of x is fixed. Next, we make the an- 
satz that the distribution perpendicular to the chao- 
tic attractor is a local Gaussian whose squared 
width e2(x) is a function of x: 

U 2 
P"(ulx)=(2rca2(x))-Sl;exp( 2 ~ x ) ) "  (5.18) 

By inserting (5.15), (5.17), (5.18) into (4.8) and taking 
into account the Frobenius-Perron equation for 
W,(x) we find that such a solution exists with 

aZ(x)=Qlco (5.19) 

independently of n and x. The joint distribution in 
the stationary state is, thus, given by 

f' <', r W(x,y)= W<,(x) \2nhQ] exp [ 2hQco_ ~ ] 
(5.20) 

in qualitative agreement with the Langevin descrip- 
tion (5.7). 
In a higher order calculation in the dissipation 
strength E the x-dependence of the broadening in 
the y-direction is no longer negligible. To illustrate 
this, we now assume that the function f(x) specify- 
ing the classical map is even in its variable f ( - x )  
= f ( x ) .  In a next to leading order approximation in 
E the branched manifold is described by a multi- 
valued function f * = f - E f  -1 consisting of two 
branches. Note, however, that in the Gaussian part 
of the kernel K (5.15) f *  appears always in the form 
E2/f *' and, therefore, f* '  can there be replaced in 
the present approximation by f ' .  Due to these prop- 
erties the ansatz (5.18) with (5.17) turns out to be val- 
id. A direct substitution then gives up to order E 2 a 
variance c~ 2 independent of n 

E 2 
c~2(x) =~co (1-I- [f,(f_,(x))]2). (5.21) 
The approximation breaks down in a tiny region 
where If '(f-l(x))l <E as we discussed earlier. In its 
region of validity (5.21) illustrates that the x-depen- 
dence of the variance c~ 2 is weak in a next to leading 
order calculation in the dissipation strength E. Note 
that e2(f(y)/E) is an even function of y due to t h e  
symmetry f (y)= f ( -  y). Finally, for the stationary 
distribution around a point x, ycz on the branched 
manifold approximating the strange attractor we ob- 
tain 

W(x,y)= W<l(x)(2~ho:2(x))-l/2exp [ (Y-Ycz)2] 

(5.22) 

Wcz here denotes the projection of the classical sta- 
tionary density on the x axis in the given approxi- 
mation. 
In general, the broadening of the distribution 
around the branches of the classical strange attrac- 
tor is specified by a characteristic length, which is of 
the order of magnitude lc=(hQ/co) 1/2. Quantum fluc- 
tuations wash out the Cantor structure of the 
strange attractor on the scale l c and thereby destroy 
the classical strange attractor�9 However, for small h 
a well defined fractal dimension may be found when 
measuring the asymptotic dynamics of the quantum 
mechanical mean values on scales larger than lc and 
a break-down occurs only on finer scales as in the 
presence of a weak classical noise [263. 

Appendix: Other Quantization Procedures 

Once a suspension has been chosen a considerable 
freedom still exists in the quantization of dissipative 
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maps because of the possibility of choosing different 
couplings to the heat bath. In order to study the in- 
fluence of this freedom on the form of the resulting 
quantum map, we have investigated also the case 
when, in place of Eq. (3.3), the main oscillator and 
the heat bath oscillators are bilinearly coupled 
through their position coordinates and the coupling 
is weak�9 In this case the equation governing the time 
development of the Wigner function associated with 
the reduced density matrix [27] possesses another 
form then (3.11). However, in the limit of weak 
damping (7~co), which is of interest to us here, the 
stroboscopic map turns out to be very similar to 
that we described in Sect�9 4. In fact, in leading order 
in ~ they become equivalent�9 This may illustrate the 
insensitivity of quantum maps with respect to the type 
of the coupling of the suspended system to the heat 
bath. 
In the following we wish to illustrate also how the 
results change with the quantization procedure. We 
employ a phenomenological quantization procedure 
which has recently been worked out [7]. It corre- 
sponds to the choice of a different suspension of the 
original map. First, we factorize the total map into a 
part which is locally area preserving and another 
linear part which is area contracting. The total 
quantum map is the convolution of the two separate 
parts. Among several possibilities we choose here for 
illustration the following factorization of (2.8): 

x,+ 1 = -Ey,+~, Yn+l =Ex,+~, (A.1) 

x,+~=x,, y,+~=y, -E-af(x,) .  (A.2) 

For the conservative part (A.2) one can always find 
a Hamiltonian [7] which brings it into the form 

OH(x,,y,+~) 
Xn+�89 Oyn+_k ' 

6H(x,, y,+}) (A.3) 
Y" + 21 = Y~ 0x, 

By comparing (A.3) and (1.2) 

H (x., y. + ~) = E- I g(x,) (A.4) 

follows, where g denotes the integral of f:  g'(x) 
= f(x). Note that the Hamiltonian is independent of 
the "momentum" y in the present case. With (A.4) 
the kernel K(x,+~lx,) transforming a wave function 
~,(x~) into ~n+~(x,+~) reads [7] 

=6(x ,+~-x , )exp( - -~g(x , ) ) .  (A.5) 

From here it is easy to construct the kernel for the 
Wigner function W(x,y). By means of the definition 
(3.10) one obtains 

Kl(x~+~,yn+~; x~,,y,)=~(x, ~-xn) 

2~ exp [ - 
�9 i ~ ( y n + ~  - -  y , , ) ]  

�9 (g ( . + ? ) - g  ( . -? t ) ] .  tA.6, 
Next, we turn to the dissipative part (A.1) and look 
for the corresponding kernel. The simplest way to 
obtain it is to find a quantum master equation with 
continuous time variable which on a stroboscopic 
map generates just the dynamics (A.1) for the mean 
values. Here there are again several possible choices�9 
After the calculation of Sect�9 3, however, it is for us 
most convenient to take the master equation for a 
damped harmonic oscillator with co= 1, z =27z. Thus 
we obtain for the kernel 

K 2 ( x  , y; x.+~, y,++) 

f d~dt/ 
= a ~ exp[ -i~(x+Ey,+~)-it l(y - Ex,+ ~)] 

�9 exp [ - hQ(~ 2 +/I 2)/2], (1.7) 

where Q, defined by (4.5), plays the role of a phe- 
nomenological parameter. Of course, (A.7) is a spe- 
cial case of (4.4) for g = f =0. 
The kernel for the total map (A.1), (A.2) is then the 
convolution of (A.6), (A.7): 

K(x, y; xn, y,) = 5 dx,+~dyn+ ~ K2(x  , y; x,+~, y,+~) 

�9 Kl(x,+~, y,+~; x,, y,). (A.8) 

A direct substitution yields 

K(x, y; x,, y.) 

=(2~zhQ)-l/2exp [ (y-Ex ' )2]  
2hQ J 

d~ 
�9 5 ~ exp[ - i~(x - f ( x . )  +Ey,) -hQ~2/~2/23 

(A.9) 

Equation (A.9) has a similar structure as the kernel 
(4.9) obtained by quantizing via the suspension (2.1). 
The quantum noise enters somewhat differently, 
however, only in the order h 2, and the dissipation 
factor E explicitly appears in the nonlinear function 
g. Due to the similar structre, however, the most im- 
portant qualitative properties for h ~ 0  remain un- 
changed: There are two different levels of semiclassi- 
cal approximations. On the higher level the kernel 
contains an Airy function and cannot be interpreted 
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in terms of a classical conditional probability densi- 
ty. On the lower level, which only exists in the non- 
conservative case (E< 1), the quantum map becomes 
equivalent to a noisy classical map with noise in- 
tensity proportional to h. Whether the noise terms 
appear in an additive or multiplicative way and how 
the noise sources scale with E may, in general, de- 
pend on the particular method of quantization. 
Finally, we mention that the suspension chosen in 
the main text generates a natural factorization of the 
classical map. The dissipative part is there given by 
the stroboscopic map between two subsequent kicks 
and the conservative part by the action of a kick 
itself. This factorization is quite different from the 
one defined by Eqs. (A.1), (A.2). By transforming 
(2.3) and (2.5) into the x,y representation with C = 0  
we find 

xn+ 1 =xn+~, y~+l =y~+i ~-E-lf(x~+~), (A.10) 

x .+~= .Ey .+ f(x.), y.+~=Ex.+E-if(x.+~) 
(A.11) 

which is, indeed, different from (A.1), (A.2). It is sat- 
isfactory, therefore, that the most important qualita- 
tive properties for h--*0 are not changed by these dif- 
ferences. 

One of us (T.T.) is grateful to Dr. R. Reibold for useful dis- 
cussions. 
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