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The master equation for a quantized version of H6non's map with dissipation derived 
in a preceding paper is here solved numerically for the Wigner quasi-probability density, 
under conditions of period doubling and classical chaos both in the transient regime 
and in the dissipative steady state. Approximations of the quantum map by a classical 
stochastic process are also considered and compared with solutions incorporating non- 
classical quantum fluctuations. 

1. Introduction 

The study of quantum effects in classically chaotic 
systems continues to be a very active field of research 
[1]. While a large number of results on conservative 
quantum systems is by now available, results on dissi- 
pative quantum systems are still rather sparse, even 
though it is widely appreciated that (i) dissipative 
effects in many quantum systems are non-negligible, 
and (ii) that some quantum effects are very sensitive 
to small perturbations with dissipation. 

In a preceding paper [2] (henceforth quoted as I) 
two of us have considered a dissipative system (a non- 
linearly kicked damped harmonic oscillator) which 
is classically described by a two-dimensional discrete 
map of the type first introduced by H6non [3]. After 
a suitable choice of parameters these maps, numeri- 
cally, show behavior indicating the existence of a 
strange attractor. Quantum mechanical master equa- 
tions describing quantized versions of these maps 
have been derived in I and were used there to obtain 
analytical asymptotic results for the quantum correc- 
tions to classical behavior in the limit h --+ 0. The pres- 
ent paper is a sequel to I, and has the purpose to 
present more detailed numerical solutions of one of 
the master equations derived in I. Numerical results 
for the quantized standard map with dissipation [4] 
have been reported in [5]. A part of the original re- 
sults of the present paper has been reviewed in [6], 
together with further results on dissipative quantum 
maps. 

The paper is organized as follows. In Sect. 2 we 
summarize the necessary results of I concerning the 

dissipative quantum map we wish to analyze. Sec- 
tion 3 gives some results for the classical attractor 
and the phase space density it supports. Iterations 
of the map, for the effective h rather deep inside the 
quantum regime, from an initial state into the final 
steady state are then considered in Sect. 4. In Sect. 5 
the Wigner distribution in the steady state for small 
values of the effective h is considered and compared 
with a classical stochastic approximation which is ex- 
act asymptotically for h--* 0. In Sect. 6 we return to 
the problem of relaxation to the steady state and nu- 
merically determine the longest lived transient com- 
ponent of the Wigner distribution and its decay rate. 
We close, in Sect. 7, with some results for the Wigner 
distribution in the period doubling regime. 

2. The dissipative quantum map 

We wish to study a quantum version of a classical 
two-dimensional map of the form 

x,+ 1 = f (x,)--b y , - x ~  y,) 

Y,+I = x , = y ~  
(2.1) 

first introduced by H6non. Here the parameter b 
(0 < b < 1), b = 0.3 in the following) gives the Jacobian 
of the map and therefore describes dissipation. The 
function f ( x )  chosen by H6non was f ( x ) =  1 - a x  2, 
which turns (2.1) into a minimal 2-dimensional gener- 
alization of the logistic map. For  our purposes this 
particular choice has the undesirable feature that part 
of the (x, y)-plane is attracted to infinity under itera- 
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tions of the map. Classically, difficulties with this can 
be avoided by starting initially only with points out- 
side the domain of attraction of oo. However, quan- 
tum mechanically there will always be some tunnel- 
ling between the domains of different attractors, and 
therefore, the existence of an attractor at oo always 
renders the total system unstable. In the following, 
we therefore make the choice 

ax 2 
- - -  ( 2 . 2 )  f (x)= 1 1 + x 4 

which avoids this problem. 
Next, we proceed from the classical map (2.1) to 

a quantum mechanical master equation. This can be 
done by recalling that (2.1) is the stroboscobic map 
of a nonlinearly kicked damped harmonic oscillator. 
(We shall normalize the unperturbed frequency of this 
oscillator to be co = 1.) The damping of the oscillator 
can be modelled by coupling the conservative oscilla- 
tor to a reservoir of many other harmonic oscillators 
and subsequently eliminating the reservoir oscillators 
in Markov approximation. These steps were carried 
out in I, to which the reader is referred for details. 
The result of this procedure is a master equation ((3.4) 
of I) governing the time evolution of yon Neuman's 
statistical operator p describing the mixed state of 
the kicked damped oscillator. The statistical operator 
p is most conveniently, and completely generally, rep- 
resented by Wigner's quasi-probability density 
W(x. p) 

ipq . 
do e - W ( x + 2  p x q) W(x, p) = I 

(2.3) 

ipq X'-F 2)  W(x,p) P=SdpSdqen-Sdx ( x -  2 �9 

While x directly corresponds to x in the classical map 
(2.1) the momentum variable p corresponds to the 
variable y in (2.1) via 

P = _ ~/~y.+ f(x) (2.4) f t  
(In I the variable y was defined with a different scale 

factor which corresponds to replacing I /by  --+ y in (2.4) 
and all other equations.) In the representation (2.3) 
with y defined by (2.4) the master equation derived 
in I takes the explicit form (cf. (4.8), (4.9) of I, where 
we put co = 1) 

W,+l(x,y)=Sdx'dy'K(x,y;x',y')W~(x',y') (2.5) 

with 

1 [ 1  ] 
K(x,y;x',y')=/2~rh~ exp ~(x - - x~  2 

exp[_iq(y_yO(x, ' ,,, hQ y ) ) - - ~  ~12 + iG(x, ~I,/i)] 

(2.6) 

dq 

and 

1 x+ 2"~b~b */h 
G(x,q,h)=-7- [ ~ f (~ )d~- -T f ( x ) ]  (2.7) 

Vbh ux_ Vb , 21/~ 

1 - b  h(2_~BT ) Q = T  coth . (2.8) 

Equation (2.6) shows how the classical map (2.1) is 
built into the quantum map via the functions x~ y), 
y~ y) defined in (2.1). Equation (2.8) shows how the 
quantum mechanical form of the fluctuation dissipa- 
tion relation determines the noise intensity Q at the 
reservoir temperature T which appears as a width 
in the kernel of (2.6). In the numerical work of this 
paper we shall always assume that kB T ~  h~o, in which 
case we may replace (2.8) by Q=(1-b)/2. We note 
that even in the absence of dissipation, i.e. for b = 1, 
where Q vanishes, the kernel (2.6) still has a finite 
width which is generated by the function G of (2.7), 
i.e. by the nonlinearity of the function f(x) appearing 
in the map (2.1). In the following it will be useful 
to expand the expression (2.7) as a power series in 
hq 

h2q a f"(x) / /h2q2\\ 

In our numerical work, for the values of h, b and Q 

which we shall use, the terms of order - " '(~)4 not 

written explicitly in (2.9) will be entirely negligible 
in (2.6), i.e. it will be safe to use the leading term 
of (2.9) instead of the full but more complicated ex- 
pression (2.7). 

Then, the y-integral in (2.6) can be carried out 
and we arrive at the more explicit form of the kernel 
((5.3) of I) 

1 [  1/3 
K(x, y; x', y')= (2~zhQ)l/2 \h 2 If (x)l] 

�9 exp[-2@o(x-x~ ] 

[ 16Qab 4Qb 0 , y,))] 
-exp [3 h ~ ) )  2 4- ~ (y-- y (x, 

.Ai([y__yO(x, ' ,- 2Q21 /  8b 2 ]1/3] 
y (2.1o) \[ /- j H t x u \ n ~ j t x ) /  



Here Ai(x) is the Airy function, which falls off rapidly 
(like x -  1/4 exp ( - 2  x3/2/3))  for positive x but oscillates 
like Ixl- 1/4. cos(2 I x l a / 2 / 3  - ~)  for negative x. It should 
be noted, however, that the exponential prefactor of 
the Airy function in (2.10) tends to suppress its oscilla- 
tory regions while it enhances its regions of monoton- 
ic behavior. These mutually counteracting influences 
in (2.10) describe the competition between quantum 
mechanical coherence effects (oscillations of the Airy 
function) and dissipative effects (suppression of oscil- 
lations). 

3. Classical results 

First we consider the bifurcation diagram of the clas- 
sical map (2.1) for b--0.3 in the domain of the control 
parameter a el-0, 5]. To generate the diagram shown 
in Fig. 1, 100 randomly picked initial points 
(x ,y)e[--2 ,  2] x [ - 2 ,  2] were iterated 100 times in 
order to converge on the attractors of the map and 
the x coordinates of the following iterates were then 
plotted. This was repeated for 500 evenly spaced 
values of a covering the chosen interval. The bifurca- 
tion diagram has the typical structure (fixed point, 
period doubling, chaos, periodic windows) known for 
H6non's map with quadratic nonlinearity. In the fol- 
lowing a fixed value a = 3.4 is chosen, where, numeri- 
cally, the map has a strange attractor. 

In Fig. 2 the attractor is generated globally in the 
x, y plane by plotting 2000 iterates, again discarding 
transients by dropping the first 100 iterates. Fig- 
ure 3 a~t  gives increasing local amplifications (by fac- 
tors 100, respectively) of the substructure of the 
strange attractor inside the square shown in Fig. 2. 

- 1 1  - 
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1 2 3 4 5 

Fig. 1. Bifurcation diagram of the map (2.1), (2.2) for b=0.3  
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Fig. 2. 2000 non-transient iterates of the map (2.1), (2.2) for a=3.4 ,  
b=0.3  

In order to maintain a number of 103 points per dia- 
gram the number of iterations was increased up to 
1.7 x 107. 

Next we wish to construct the classical phase- 
space probability density which is supported by the 
attractor of Fig. 2. The following procedure proved 
to be very stable and efficient. The interval (x, y)~ 
[ -  l, l] x [-- l, l] is partitionned into squares as shown 
in Fig. 4 for the example of l=  2 and the partition 
is then mapped by applying (2.1). The result is also 
shown in Fig. 4. Lines of x = const, are mapped on 
lines y=cons t ,  by (2.1), while lines y=cons t ,  are 
mapped onto the curves 

a y 2 
x = l  l + y 4  b.const (3.1) 

shown in Fig. 4. The mapping of the squares in the 
lower right corner is also indicated there, as an exam- 
ple. We wish to choose I such that the mapped parti- 
tion lies inside the original partition, which requires 

1 a / 2 - 1 ]  
/ > m a x  1 - b '  i ~ - b ] "  (3.2) 

Then each point within the chosen square eventually 
(for n ~  oo) must land on the attractor. It is clear 
from (3.2) that close to the conservative limit b---, 1 
the square must become very large, i.e. this limit is 
not covered by the following procedure. In the numer- 
ical work of this paper we always choose b = 0.3. Next, 
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Fig. 3a~l�9 Increasing local amplification of the square shown in Fig. 2, increasing the number of iterates to generate 203 points per plot 

the area of the mapped partition inside each of the 
squares of the original partition is computed�9 This 
procedure is used to generate a positive matrix Pu 
which gives the fraction of the area of the square 
labelled by j which is mapped into the square labelled 
by i. Clearly ~plj= 1 by definition. Iterating the ac- 

tion of this matrix on any initial distribution W~ over 
the squares of the partitition until convergence is 
achieved one generates a stationary distribution Woo~ 

Woo~ = lim ~(P")u Wj (3�9 
n - ~  o o  j 

which approximates the stationary phase space den- 
sity for sufficiently fine partitions�9 

In Fig. 5 we show the result obtained in this man- 

ner with n = 5 0  for a partition with / = 2  and 104 
squares. Only the grossest features for the substruc- 
ture shown in Fig. 2 are resolved within the chosen 
partition�9 The pronounced 3-peak structure of the 
probability density on the attractor indicates that, for 
the chosen values of a, b the system is chaotic but 
close to a 3-cycle, which is also visible in Fig. 1. 

4. Transient Wigner distribution 

The numerical method for the classical case described 
in the preceding section must now be generalized to 
the quantum domain�9 In doing this we wish to main- 
tain for our calculations the convenience and effi- 
ciency introduced by the partition of the phase space 
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Fig. 4. Partition of the (x, y)-plane and its image under the map 
(2.1), (2.2) for a=3.4 ,  b =0.3 

describes all quantum effects. In (4.1) (xi, Yi) are the 
coordinates of the midpoint of the square labelled 
by i. Furthermore,  we assumed that the function Gik 
is constant, to sufficiently high accuracy, as a function 
of xi, y~ within a single square of the partition. This 
assumption and our goal to observe quantum effects 
in the Wigner distribution imposes an upper limit 
on the tolerable size of the squares used in the parti- 
tion. The minimal quantum uncertainty A x .Ay  
= h/2]//b should be much larger than the area of a 
single square. With decreasing values of h we therefore 
use correspondingly finer partitions. In the present 
section we begin by considering the transient relaxa- 
tion of an initial state to the final steady state for 
a rather large value of the effective h, namely h = 0.1. 
The partition is made by dividing the square 
]x], ]y] < 2.5 into 10 4 squares. The initial state we 
choose to be localized around x = 0, y = 0, and we as- 
sume 

Wo(x, y) = 2@2a2 exp ( X2-[-y2~ 7" (4.4) 

In order to satisfy the inequality 

Trp  2 = 1 
o 

, i . e .  

idxldyW2(x,y)<= ~-b 
2rth 

the inital state must satisfy 

o_2> h . 

- 2 V b  
Fig. 5. Classical stationary distribution (3.3) after 50 iterations 

into a grid of squares. The form in which the kernel 
(2.6) incorporates the classical map lends itself to rep- 
resent (2.6) on the partition by 

K(x,, y,; x), y))=K,j (4.1) 

KiJ = Z Gik Pkj (4.2) 
k 

where Pkj is the classical transition matrix introduced 
in the preceding section and 

(4.3) 

2/ Q 

"S~'= exp zo  

(4.5) 

(4.6) 

(4.7) 

In the following we choose 0"2=0.5 in accordance 
with (4.7). In Fig. 6a-c  the initial state and its first 
two iterates are shown, Fig. 6d shows the converged 
steady state, which is reached after about  4 iterations. 
The rather large value of the effective h leads to a 
practically complete obliteration of the classical at- 
tractor in the steady state by the strong quantum 
noise. Quantum effects are also visible by the negative 
values which the Wigner distribution attains in some 
parts of phase space. In the computations, the large 
quantum fluctuations caused a practical difficulty by 
the fact that the Wigner distribution did not vanish 
to sufficient accuracy on the boundaries [x1=2.5, 
lyl = 2.5 of the square to which the calculations were 
restricted. This difficulty was resolved by closing the 
square into a torus, which has some effect - but not 
a drastic one - on the form of the distributions shown 
in Fig. 6. 
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Fig. 6. a initial state (4.4); b, c its first two iterates under the map (4.2); and the steady state (6 iterations) d for a = 3.4, b =0.3, h=0.1  

5. Wigner distribution in the steady state 

Now we concentrate on the steady state and consider 
the Wigner distribution for smaller values of the effec- 
tive h. In Fig. 7 we show the Wigner distribution for 
h=0.01 and a partition of the phase space 
(x, y ) e [ - 2 ,  2] x [ - 2 ,  2] into 104 squares. The sub- 
structure of the classical attractor now begins to show 
up in the quasi-probability density. Negative values 
of the Wigner distribution are seen to arise on the 
concave sides of the classical attractor. These negative 
values occur because of the oscillations in the Airi 
function in (2.10) which, in turn, are caused by the 
function G(x, ~1, h) represented by (2.9). Other features 
visible in Fig. 7 are a still considerable broadening 
of the quasi-probability density transverse to the at- 
tractor but also a pronounced smoothening of the 
distribution longitudinal to the classical attractor. 
The latter effect is apparent if Fig. 7 is compared with 
the classical distribution of Fig. 5, and it is easily un- 
derstood as a consequence of the exponential instabil- 
ity of the classical map in the direction parallel to 
the attractor. For sufficiently small h the function 
G(x, tl, h) in (2.6), being proportional to h 2, becomes 

0 

1 

Y 

Fig. 7. Stationary Wigner distribution (20 iterations) for a=3.4, 
b=0.3,  h =0.01 

negligible compared to the term h Q q 2 / 2  b in the expo- 
nent of the q-integrand in (2.6). Dropping this term 
completely we obtain the approximate Wigner distri- 
bution shown in Fig. 8, which lacks the negative parts 
of the Wigner distribution in Fig. 7 but is otherwise 
an excellent approximation to Fig. 7. This approxi- 
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x.+1 =f(x.)-by.+~n (5.1) 

Yn+ l =Xn- t '~n  

with Gaussian 5-correlated noise sources 4,, ~, of in- 
tensity 

( r  = hQ,~. . ,  

(ft. ,Tin) = ~Q- ,~.,. (5.2) 

In fact, (5.1), (5.2) can be obtained as the quasi-classi- 
cal limit of an exact representation of the full quantum 
map  (2.5), (2.6) by a quasi-stochastic map  which has 
been introduced in [7]. The representation (5.1), (5.2) 
opens up the possibility to generate the steady state 
distribution of x, y directly by a stochastic simulation, 
i.e. by a procedure completely different and indepen- 
dent from the method used to generate Fig. 9. The 
result of such a stochastic simulation for h=0.001 
and the same partit ioning as used in Fig. 9 is shown 
in Fig. 10. This figure is based on 107 iterations of 
the stochastic map. The agreement is reasonable, but 
we remark that in practice the stochastic simulation 
converges quite slowly to a smooth distribution, and 

Fig. 9a and b. Stationary Wigner distribution (40 iterations) (a) and 
its approximation by Gaussian quantum noise for a=3.4, b=0.3, 
h = 0.001 

y 

Fig. 10. Distribution obtained from 107 iterations of the stochastic 
map (5.1), (5.2) for a= 3.4, b =0.3, h =0.001 
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the computation time involved is larger by an order 
of magnitude compared to the method used to gener- 
ate Fig. 9. On the other hand the stochastic approach 
is very direct and requires little extra thought. 

6. Lowest lying non-vanishing eigenvalue 
of the master equation 

The master equation in the form (2.5) allows for a 
separation of the n-dependence by the ansatz 

m.(x, y)= y e~(x, y) e -k" 
2 

where the eigenfunctions 
problem 

P~ satisfy the eigenvalue 

e- '~Pz(x,y)=~dx'dy 'K(x,y;x ' ,y ' )Pz(x ' ,y  ') (6.2) 

The stationary distribution W~ (x, y) corresponds to 
theeigenvalue 2 = 0 

w ~  (x, y) = Po (x, y) 

We note that 

JP~(x, y) d x d x  = ~ ,  o. 

(6.1) 

alue 

(6.2) 

s to 

(6.3) 

(6.4) 

The 'lowest lying' eigenvalues (i.e. those with the 
smallest non-vanishing real part) and the correspond- 
ing eigenfunctions determine the long-time behavior 
of the relaxation towards the steady state, as is evident 
from (6.1). These lowest lying eigenvalues and eigen- 
functions can also be determined by iterations of the 
map (2.5), but now starting with initial quasi-proba- 
bility functions in the subspace orthogonal to the 
steady state distribution, the orthogonality condition 
being 

~ Wo(x, y) dxdx=O.  (6.5) 

By (6.1) such an initial distribution converges to a 
linear combinaton of the eigenfunctions correspond- 
ing to the lowest lying eigenvalues. In Fig. 11 a-d we 
display the 18th to 21st iterates of an arbitrarily 
picked initial distribution satisfying (6.5). For this ex- 
ample the same parameter values and approximations 
as those underlying Fig. 8 were chosen. The iterates 
shown in Fig. 11 b-d are magnified by a factor 2 com- 
pared to Fig. l la, for clarity. It turns out that 
Fig. l ld, after appropriate rescaling, reproduces 
Fig. l l a  quite accurately. Therefore, the imaginary 
part of the lowest lying eigenvalue 2 is close to +_ 2n/3 

Im 2=  •  (6.6) 

corresponding to the fact, already mentioned above, 
that the system is close to the bifurcation into a 3- 

a 

o 

I 
y 

y 

Fig. 11 a-d. Linear combination of the two complex conjugate low- 
est lying eigenfunctions (a) and its next 3 iterates (b-d) for a = 3.4, 
b =0.3, h=O.O1 
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cycle. The real part of 2 can be obtained from the 
scale factor S by which the distribution shown in 
Fig. 11 d differs from that of Fig. 11 a via 

Re 2 = �89 SI. (6.7) 

Numerically, we calculate S from 

1 u W.+a(x~,y~) (6.8) 
S --~-~ i~=l Wn(xi, Yi) 

and find from (6.7) 

Re 2-~ 0.288 (6.9) 

for the parameter values chosen in this example. This 
value is in agreement with the fact that about 4 itera- 
tions are necessary to reach the steady state. We note, 
however, that Re 2 is much smaller than the basic 
rate constant Iln bl ~-1.2 which one infers from the 
contraction rate b=0.3  of the classical map, which 
shows that the proximity to a bifurcation point al- 
ready leads to a considerable slowing down of the 
relaxation to the steady state. 

7. Wigner distribution in the period doubling regime 

Finally, we consider stationary solutions of the master 
Eq. (2.5), (2.10) in the period doubling regime of pa- 
rameter space. Figure 12 shows cycles of the classical 
map (2.1) obtained for increasing values of a at fixed 
b=0.3.  The figure makes clear, how the classical at- 
tractor of Fig. 2 is gradually built up for increasing 

1 . 0  
_X 

. 5  

0 .  

1 - Z y k [ u ~  [ a = l . 5 1  

2 - Z y k t u ~  [ a = 2 . 3 1  

[ ]  4 - Z y k [ u s  [ a = 2 . 8 1  

0 8 - Z y k t u ~  ( a = 2 . 6 9 }  

- 1 . 0  I - I I I r l i l l l l l _ l l l l  

- 1  - . 5  0 . 5  

Fig. 1 Z  C y c l e s  o f  t h e  c l a s s i c a l  m a p  (2.1), (2.2) ~ r  b = 0.3 

O 

o~ 

I i 

I 

Y 
I 

i 

b 

o 

1 
y 

o 

c 

o 

1 
y 

Fig. 13a-c. Stationary Wigner distribution for the fixed point (a), 
two cycle (b), and four-cycle (e) shown in Fig. 12. The four-cycle 
is not resolved 

cycle length. In Fig. 13 a-c the stationary Wigner dis- 
tributions for the fixed point, two-cycle and four-cycle 
shown in Fig. 12 are given for the case h=0.01 and 
using a grid of 104 squares in the interval E - 2 ,  2] 
x [ - 2 ,  2]. Obviously the 4-cycle cannot be resolved, 

and this remains true even if the effective h is de- 
creased to 10- 3. As was shown in Sect. 5, in this latter 
case the stochastic approximation of the quantum 
map is already quantitatively valid. Figure 14 gives 
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a 

0 1 2 3 4 5 

Fig. 14. Bifurcation diagram of the stochastic map (5.1), (5.2) for 
b =0.3, h =0.001 

the bifurcation diagram, obtained like Fig. 1, of the 
corresponding stochastic map (5.1), (5.2) with h 
= 10 -3, which also shows that only the two cycle 
can be resolved in this case. According to scaling the- 
ories of noise in classical maps [-7, 8], which, as we 
have shown above, are applicable in this case, the 
effective h would have to be decreased to -~ 10 - 6  in 
order to resolve the 4-cycle. 

We would like to thank Michael D6rfle for useful suggestions con- 
cerning the numerical work. 
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