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In nonautonomous dynamical systems, like in climate dynamics, an ensemble of trajectories initiated in the
remote past defines a unique probability distribution, the natural measure of a snapshot attractor, for any instant
of time, but this distribution typically changes in time. In cases with an aperiodic driving, temporal averages
taken along a single trajectory would differ from the corresponding ensemble averages even in the infinite-time
limit: ergodicity does not hold. It is worth considering this difference, which we call the nonergodic mismatch,
by taking time windows of finite length for temporal averaging. We point out that the probability distribution
of the nonergodic mismatch is qualitatively different in ergodic and nonergodic cases: its average is zero and
typically nonzero, respectively. A main conclusion is that the difference of the average from zero, which we
call the bias, is a useful measure of nonergodicity, for any window length. In contrast, the standard deviation of
the nonergodic mismatch, which characterizes the spread between different realizations, exhibits a power-law
decrease with increasing window length in both ergodic and nonergodic cases, and this implies that temporal
and ensemble averages differ in dynamical systems with finite window lengths. It is the average modulus of the
nonergodic mismatch, which we call the ergodicity deficit, that represents the expected deviation from fulfilling
the equality of temporal and ensemble averages. As an important finding, we demonstrate that the ergodicity
deficit cannot be reduced arbitrarily in nonergodic systems. We illustrate via a conceptual climate model that
the nonergodic framework may be useful in Earth system dynamics, within which we propose the measure of
nonergodicity, i.e., the bias, as an order-parameter-like quantifier of climate change.
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I. INTRODUCTION

Ergodicity1 plays a central role in the foundation of statis-
tical mechanics (see, e.g., [1]). Loosely speaking, ergodicity
means that the time average of a long time series is equal
to the average of the same quantity taken over a properly
defined ensemble. In many systems in thermal equilibrium the
Gibbs ensembles provide the appropriate instantaneous phase
space averages. New impetus to ergodic research was given by
the exploration of chaotic dynamical systems. In dissipative
dynamical systems with a constant or time-periodic driving
the appearance of chaotic attractors is a common phenomenon,
and the natural measure (the Sinai-Ruelle-Bowen or SRB
measure) of the attractor is found to be ergodic, see, e.g.,
[2,3]. An important difference between the two cases is the
following. In normal macroscopic systems even the shortest
observational times are several orders of magnitude larger than
the characteristic (microscopic) time, and hence ergodicity
is found to be typically fulfilled. This is, however, not the
case with dynamical systems. Besides individual attempts (see,
e.g., [4,5]), no systematic study is available about how long
the length of the time series should be in order to ensure
a reasonable agreement between temporal and ensemble
averages.

A well-established theory of natural measures, μ, on chaotic
attractors holds for dissipative dynamical systems that are
either autonomous or driven by a temporally periodic driving.

1As usual in physics, we call a dynamical system ergodic if it obeys
Birkhoff’s equality of time and ensemble averages.

This theory is most commonly based on the set of unstable peri-
odic orbits (see, e.g., [6]), and ergodicity is known to be valid
in this class only [2]. There exist, however, nonautonomous
dissipative dynamical systems characterized by parameter
shifts, or, more generally, by temporally aperiodic drivings
which can be considered generic in nature. This is the case
with Lagrangian coherent structures [7], or with power grids
experiencing an increasing demand [8]. For other examples
see [9]. Since there is a growing concern that the observed
increase of greenhouse gases may lead to dramatic changes
in the Earth system, perhaps the most striking example for
continuous parameter shifts occurs in the dynamics of climate
change [10,11]. In such dynamical systems ergodicity has not
yet been investigated.

There is an increasing amount of evidence supporting that a
concept ideally suited to the study of dynamical systems with
arbitrary time dependence is that of snapshot attractors [12]
(also called pullback attractors in the mathematics and in part
of the climate-related literature [13–17]). Loosely speaking, a
snapshot attractor is an object belonging to a given time instant
that is traced out by an ensemble of a large number, N � 1,
of trajectories initialized in the past, all of them governed by
the same equation of motion.

In the dynamical systems community, the concept of
snapshot attractors has been known and successfully applied
for many years [12,18–25]. A precursor was the discovery of
synchronization by common noise (i.e., by the same realization
of a random driving) by Pikovsky [26,27], a case when—in
the current terminology—the snapshot attractor turns out to be
regular. Instead of random drivings, most often considered in
the physics literature, deterministic drivings are more natural
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to consider in the climatic context, because a climate change is
most simply induced by a smooth shift of parameters in time,
without including any stochasticity [28–30].

In this paper thus only deterministic drivings are consid-
ered. In particular, we investigate relatively fast parameter
shifts which exclude the applicability of an adiabatic ap-
proximation. We also restrict our investigations to snapshot
attractors that underlie a complex, chaoticlike dynamics. An
appealing feature of such a snapshot attractor is that it carries
[15] a unique probability measure (the natural measure, the
analog of the SRB measure of usual attractors). The ensemble
representing the natural measure is provided by trajectories
evolving from a set of different initial conditions; these
trajectories shall thus also be called different realizations.
The natural measure is independent of the particular choice
of the set of initial conditions used for its representation.
From a practical point of view, this independency holds
after a convergence time (which shall be denoted by tc) has
passed from the initialization of the ensemble. The concept of
the convergence time relies on the exponential convergence
to attractors which is expected to characterize dissipative
dynamical systems. The snapshot attractor and its natural
measure is thus determined with an “exponential accuracy”
after a time interval of length tc (for more details see [30]).

It was numerically demonstrated already by Romeiras,
Grebogi, and Ott [12] in their setup that any single long
trajectory traces out a pattern in the phase space that differs
strongly from the pattern of an ensemble in any time instant.
This is a clear indication for the breaking down of ergodicity
in dissipative nonautonomous systems with a generic time
dependence.

Our aim in this paper is to quantify the degree of
nonergodicity in such systems. A feature we have to take into
account is that temporal averages over infinitely long time
intervals are unrealistic to carry out in practice (especially
in systems with parameter shifts). It will be shown to be
meaningful to concentrate on temporal averages taken over
a time window of finite length along a single realization, and
to compare them with averages taken over the ensemble in a
time instant. The difference between these quantities, which
we call the nonergodic mismatch, is a quantity depending on
the realization. Because of this property, one should study,
instead of individual cases, the probability distribution of the
nonergodic mismatch in the system. A goal of our paper is
to argue that a proper measure of the systems’ nonergodicity
is the average of this distribution (i.e., the ensemble average
of the nonergodic mismatch) which differs from zero only
in nonergodic cases, for any generic choice of the window
length. A further goal is to point out that the ensemble average
of the absolute value of the nonergodic mismatch (which
we call the ergodicity deficit, and which is the expected
error of a single-realization temporal average with respect
to the ensemble average) cannot be made arbitrarily small
in nonergodic cases. These results have been obtained by
careful reasoning following theoretical considerations and are
supposed to hold in a rather universal context. We support our
findings numerically within an elementary climate model in
the main text, and with further examples in Appendix D.

The paper is organized as follows. In Sec. II we briefly
introduce our particular model system, the details of which are

given in Appendix A. Section III is devoted to the analysis of
the probability distribution of the nonergodic mismatch. The
closing Sec. IV summarizes the main findings and provides
a discussion. Further aspects of the problem are illustrated in
appendices: Appendixes B and C provide an extension to the
concept of the nonergodic mismatch, and an investigation of
the time dependence of the nonergodic mismatch distributions,
respectively. Appendix D reinforces our main findings with
two additional driving functions both in the climate model
and in a nonautonomous mapping. For completeness, the
same analysis as in the main text is carried out with an
alternative concept of ergodicity in Appendix E, and leads to
the conclusion that stationary and changing climates cannot be
distinguished from the point of view of this alternative concept
of ergodicity.

II. CLIMATE MODEL EXAMPLE

Our main illustrative example is based on a low-order
model of atmospheric circulation introduced by Lorenz [31]
(different from that of the celebrated Lorenz attractor [32]).
This appealing model was studied in several contexts [28,33–
44]. It represents a coupled dynamics between the averaged
wind speed of the Westerlies on one hemisphere, represented
by the variable x, and two modes of cyclonic activity, denoted
by y and z. The model reads as follows:

ẋ = −y2 − z2 − ax + aF (t), (1a)

ẏ = xy − bxz − y + G, (1b)

ż = xz + bxy − z, (1c)

with the standard parameter setting: a = 1/4, b = 4, G = 1.
The equations appear in a dimensionless form with the time
unit corresponding to 5 days, according to [31].

The driving appears via the temperature contrast parameter
F (t) which represents the temperature difference between the
Equator and the pole and which can mimic the effect of the
increasing greenhouse gas content. To include seasonality and
to separate it from the greenhouse gas forcing we write (as in
[30])

F (t) = F0(t) + AF sin (ωt), (2)

where ω = 2π/73 represents the annual frequency (as one
year is T = 73 time units), and the amplitude of the annual
oscillations is AF = 2 (as in [45]).

The center F0(t) of the temperature contrast parameter is
assumed to decrease linearly (according to an increase of the
greenhouse gas content) by two units over 100T = 100 yr:

F0(t) =
{

9.5 for t � 0,

9.5 − 2t
100T

for t > 0.
(3)

Climate change (i.e., a shift in the dynamics) sets in at
time t = 0; before this time instant a stationary climate (i.e.,
a stationary dynamics) is present, governed by F0 = 9.5 =
const. The corresponding chaotic attractor is usual and thus
ergodic (for infinite window lengths [2]). This chaotic attractor
coincides with the snapshot attractor for t < 0, while for t > 0
the dynamics can be characterized properly by the snapshot
attractor and its natural measure only.
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Of natural interest is the average of a quantity ϕ [an arbitrary
function ϕ(x) of the phase space position x = (x,y,z)] taken
with respect to the natural measure μ of the snapshot attractor
belonging to a time instant t . This ensemble average shall be
denoted as Aμ(ϕ(t)), and is well approximated for N � 1 as

Aμ(ϕ(t)) = 1

N

N∑
i=1

ϕi(t), (4)

where ϕi(t) corresponds to the ith member of the ensemble in
the time instant t .2

Appendix A provides a detailed description of the numeri-
cal method, and also an overview of how the snapshot attractor,
and a particular ensemble average evolve in time. One point to
emphasize is that we wish to eliminate the effects arising from
the annual component of the driving, so that we take only one
time instant from every time period T (a given “day” of the
year). That is, we define a stroboscopic map, for all numerical
investigations throughout this paper.

III. DIFFERENCE BETWEEN TEMPORAL AND
ENSEMBLE STATISTICS

A. Probability distribution of the nonergodic mismatch

For characterizing temporal averages, we have to choose the
length of the time interval (in what follows: the time window)
over which the average is taken. Let us denote this by τ . We
consider it to be an essential part of the problem that this
window cannot be taken arbitrarily large in practice. First,
one might wish to concentrate only on particular intervals
within the time evolution of the system, e.g., on the intervals
in which the parameter shift of interest takes place.3 Second,
we shall see (Sec. III C) that the convergence of the time
average, for increasing τ , to a limiting value is rather slow
(without any characteristic time), thus no practically accessible
time window exists which would represent an infinite window
length faithfully, not even in an ergodic dynamics. In this
section, we ask the question if one can find a criterion for
distinguishing ergodic and nonergodic cases even without
carrying out the τ → ∞ limit. Therefore, in what follows
we use finite window lengths.

Let ϕ(t) denote a single time series of a quantity, i.e., a
time series of a given function of the phase space position
x(t) = (x(t),y(t),z(t)) of a trajectory that started at a single
initial position x0 = (x0,y0,z0) corresponding to some initial
time instant t0. x(t) [or any derived quantity ϕ(t)] is a single
member of the ensemble, or, in the terminology of Sec. I, a
single realization of the dynamics. The time average Aτ of

2Formally, with μ(t) being the time-dependent natural measure at
time t , the ensemble average of ϕ is written as

Aμ(ϕ(t)) =
∫

ϕdμ(t). (5)

3Note that a parameter shift of diverging nature cannot last
arbitrarily long in physically relevant systems. In case it does,
the τ → ∞ limit of time averages is not guaranteed to be well
defined. Time averages can always be evaluated, however, within
time windows of finite length.

ϕ(t) taken over the time window of length τ , ordered to time
t in a midpoint convention4 (t shall be called the “time of
observation”), reads as

Aτ (ϕ(t)) = 1

τ

∫ t+τ/2

t−τ/2
ϕ(t ′)dt ′. (6)

Any time average Aτ is, by definition, a property of the
particular realization emerging from x0 in t0, and we shall
call it a single-realization temporal (SRT) average.

A possible quantity characterizing a deviation of the SRT
average from the ensemble average is the difference between
these averages. This difference we shall call the nonergodic
mismatch with a time window of length τ , associated to the
time instant t of observation:

δτ (t) = Aτ (ϕ(t)) − Aμ(ϕ(t)). (7)

This mismatch, too, depends on which particular realization is
chosen.5 In other words, each realization (initial condition)
provides a different value for δτ (t), even in an ergodic
dynamics, because each trajectory has opportunity to visit
only a subset of the accessible phase space positions during
the time window τ . One should, therefore, consider the
probability density function (pdf) of δτ (t) which we shall call
the nonergodic mismatch pdf and denote by P (δτ (t)). We shall
point out the differences in the nonergodic mismatch pdfs
arising from time instants t that are taken from a stationary
and a changing climate.

For a numerical illustration in the Lorenz model, we choose
the variable y (one mode of cyclonic activity) as the quantity
ϕ, and numerically determine6 the nonergodic mismatch pdf
P (δτ ) as a histogram. In particular, we divide the δτ axis into
small bins and count the number of single realizations out
of our ensemble of trajectories, initiated with different initial
positions x0 at t0 = −250 yr, that produce a δτ value falling
into a particular bin. Histograms obtained this way are shown
in Fig. 1 for three different window lengths τ in two time
instants t which are taken from a stationary and a changing
climate. (Throughout our paper we choose τ and t such that
the corresponding time interval belongs strictly to either type
of climate, see the insets of Fig. 1.)

Figure 1 illustrates that these histograms are not sharp at
all. The examples of Figs. 1(a) and 1(b), corresponding to
a stationary and a changing climate, respectively, show the
clear difference between these two cases. The most interesting
characteristics are a driving-induced bias, a spread due to
the finite window length, and a nonzero average of the
absolute value of the nonergodic mismatch which we shall call
ergodicity deficit. These are detailed in the next subsections.

4For practical purposes, it should also be decided in a driven
dynamics which time instant the temporal average is ordered to. Any
choice would lead to qualitatively similar results. For our numerical
investigations we choose the midpoint of the time window.

5For τ → 0 the SRT average Aτ (ϕ(t)) becomes the instantaneous
value of ϕ(t) so that, irrespectively of whether the dynamics is ergodic,
Aμ(δτ=0(t)) = 0.

6The integral in Eq. (6) simplifies to a sum in the stroboscopic map
of our model system.

022214-3
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FIG. 1. Nonergodic mismatch pdfs P (δτ (t)) based on the variable ϕ = y, calculated over the numerical ensemble of N = 106 trajectories
described in Appendix A. In each panel we compare three different values of the window length τ . The time instants t of observation are
indicated above the panels and are taken from a stationary and a changing climate. In the insets we show the time dependence (3) of the
parameter F0 of (2), mark the time instants t of observation by vertical gray dot-dashed lines, and indicate the different time windows (of length
τ ) in the same color (shade of gray in print) as in the main plot. The ensemble size appears to realize the asymptotic limit in the sense that we
do not find any considerable change in the graphs when plotting the results for N = 10 000, 20 000, or 106. For the histogram, the bin size is
0.025.

B. Bias, due to driving

In a stationary climate a usual attractor is present on which
the dynamics is ergodic: if stationarity holds eternally, then
SRT and ensemble averages coincide for τ → ∞ [2]. For
finite window lengths τ we claim that the ensemble average
Aμ(δτ ) of the nonergodic mismatch is zero (regardless of the
particular choice for τ ). This can be justified by considering
the values along a single time series to be samples drawn
from the same distribution (which is the natural measure of
the usual attractor): the sample average is known to estimate
the ensemble average without any bias. Additionally, the
nonergodic mismatch pdf is symmetric with respect to zero,
since, according to the central limit theorem [46], P (δτ )
approximates a Gaussian for larger values of τ .

The fact that Aμ(δτ ) = 0 means, in view of (7), the
following: although the SRT average Aτ (ϕ) for a particular
realization typically differs from the ensemble average Aμ(ϕ)
of ϕ, the ensemble average Aμ(Aτ (ϕ)) of the SRT average
coincides with the ensemble average Aμ(ϕ), for any τ . This
can be considered as an extension of the ergodic theorem for
finite window lengths.

In a changing climate, however, the ensemble average
Aμ(Aτ (ϕ)) of an SRT average typically gives a biased value
compared to the corresponding ensemble average Aμ(ϕ) (i.e.,
they are “expected” to differ). The bias is a consequence of the
SRT average incorporating, with increasing τ , more and more
information corresponding to time instants that are different
from and are farther and farther away from the time instant
t of interest. Such information is not up to date (partially
obsolete and partially originates in the future) if the snapshot
attractor and its natural measure change in time. One then
concludes, for a generic time dependence of the dynamics, that
the ensemble average Aμ(δτ ) = Aμ(Aτ (ϕ)) − Aμ(ϕ) of the
nonergodic mismatch differs from zero for any generic finite
window length τ . Furthermore, in such cases Aμ(δτ ) remains
nonzero even for τ → ∞ if this limit can meaningfully be

carried out. This finding is the breakdown of ergodicity. In
what follows, we shall call the ensemble average Aμ(δτ ) of the
nonergodic mismatch the bias (which depends on the window
length τ and also on the time instant t of observation).

Given that Aμ(δτ ) = 0 in an ergodic dynamics for any τ ,
it also follows that the bias Aμ(δτ ) provides an appropriate
measure of nonergodicity (i.e., for how different the system
is from an ergodic system) when observed on a time interval
of τ around a particular time instant t . This is then a tool to
decide if a system exhibits ergodicity around a time instant t

based on using temporal averages of finite length only.7 This
indicative nature of the bias may be regarded as an unexpected
analogy with an order parameter. The analogy is even more
complete due to the fact that the bias may take on both positive
and negative values which breaks the symmetry of the state
that is characterized by its zero value.

The numerical results presented in Fig. 1 support the generic
nature of the above argumentations. An even better illustration
is given in Fig. 2 where the bias Aμ(δτ ) is plotted as a
“continuous” function of the window length τ for the two
time instants of observation of Fig. 1. The bias Aμ(δτ ) can
be seen to be identically zero in the stationary climate, while
it increases considerably with τ in the changing case. In the
latter case, it starts from a small value, because short time
windows contain little amounts of inappropriate information.
After a rapid increase in value from about 0 to 0.2, it is seen to
switch at about τ = 25 yr to a moderate increase from about
0.2 to 0.25, in harmony with the fact that the ensemble average
Aμ(y) typically fluctuates (cf. Fig. 5 in Appendix A) in time t

within a band of width 0.5.

7More precisely, Aμ(δτ ) = 0 is a necessary condition for a system
to be ergodic.
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FIG. 2. The biasAμ(δτ ) as a “continuous” function of the window
length τ , calculated for the numerical ensemble of 106 trajectories,
where the nonergodic mismatch δτ is based on the variable y, as in
Fig. 1. The time instants t of observation are year −75 (flat black
line, stationary climate) and year 76 [magenta line (gray in print),
changing climate].

C. Spread, due to the finite window length

A considerable width of the nonergodic mismatch pdf P (δτ )
means a considerable “spread” among single realizations, and
this implies that one single realization is not representative
for the ensemble behavior sought, for any finite value of τ . In
other words, it is not sufficient in such cases to investigate the
SRT average of one particular realization in order to draw any
meaningful conclusion related to the appropriate statistics of
a quantity ϕ.

In a stationary climate, the width of P (δτ ), representing
the spread, decreases with increasing τ according to a 1/

√
τ

law. This is so because, as explained in Sec. III B, P (δτ )
approximates a Gaussian for larger values of τ according to the
central limit theorem, and the standard deviation σμ of such a
Gaussian decreases as 1/

√
τ with increasing τ .

In the numerical examples of Fig. 1 the decreasing width
with increasing τ is obvious. In the stationary climate of
Fig. 1(a) the shape of P (δτ ) is indeed Gaussian-like, and,
surprisingly, this is also true for the changing climate of
Fig. 1(b). The standard deviation σμ is what we shall call
the spread in both cases. We present the dependence of σμ(δτ )
on the window length τ in Fig. 3 for the two time instants
of Fig. 1.8 Numerically, we find an almost perfect agreement
with the 1/

√
τ law in the stationary climate (black line), and

the agreement turns out to be reasonably good in the changing
climate as well [light blue line (gray in print)]. The latter
finding appears to be in harmony with a recent mathematical
result on generalized central limit theorems in nonautonomous
systems by [47].

8σμ(δτ ) has been calculated as: σμ(δτ ) =
(N−3)!!
(N−2)!!

√∑N

i=1 (δτ,i − 1
N

∑N

j=1 δτ,j )
2

(which is the unbiased
estimator for Gaussian distributions from sample data) where
δτ,i is the nonergodic mismatch corresponding to the ith member of
the ensemble. We use the same estimator in the changing climate
because of the similar shape of the nonergodic mismatch pdfs of the
two cases.

 0.1

 1

 10  100

σ μ
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FIG. 3. The spread σμ(δτ ) as a function of the number of
years, τ + 1, included in the temporal average, plotted on a doubly
logarithmic scale, calculated for the numerical ensemble of 106

trajectories, where the nonergodic mismatch δτ is based on the
variable y, as in Fig. 1. The time instants t of observation are year
−75 (black line, stationary climate) and year 76 [light blue line (gray
in print), changing climate]. The dashed line is of slope −1/2 to guide
the eye.

From a more general point of view, the convergence of the
nonergodic mismatch pdfs to sharp shapes turns out to be, in
both stationary and changing climates, a scale free problem,
i.e., no characteristic times can be defined for the power-law
convergence with increasing window length τ . One can see
from Fig. 3 that the standard deviation of year 5 falls to 10
percent of its original value in about 200 yr, and would fall
to one percent of it in about 20 000 yr. This property is in
strong contrast with the convergence with increasing time t

of an ensemble towards a snapshot attractor (examples can be
seen in Fig. 5(b)) which is exponential, as discussed in Sec. I.
The latter process can be characterized by a characteristic
time tc (tc = 5 yr in our example). This corresponds to
an exponential convergence to the snapshot attractor which
numerically ensures a phase-space-distance accuracy of about
10−3 within tc. Reaching a snapshot attractor with an ensemble
of trajectories in time is thus much faster than reaching the
ergodic property for individual trajectories in window length.9

(The price for the fast convergence is the use of an ensemble
instead of individual realizations.) The fact that it is hopeless
to choose time windows sufficiently long to typically observe
δτ ≈ 0 supports a posteriori our choice to focus on cases with
finite window lengths τ .

D. Ergodicity deficit

We emphasize that both a large bias Aμ(δτ ) and a large
spread σμ(δτ ) lead to the inapplicability of single-realization
temportal (SRT) averages for estimating ensemble averages
in nonautonomous dissipative dynamical systems with a
generic time dependence. One can reduce the bias and the
spread by decreasing and increasing τ , respectively: this is
a tradeoff situation. Therefore, one may not be able to find

9By the latter, we mean reaching a sharp nonergodic mismatch pdf
that is centered on zero.
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FIG. 4. The ergodicity deficit Aμ(|δτ |), compared to the bias Aμ(δτ ) and the spread σμ(δτ ), as a function of the window length τ , calculated
for the numerical ensemble of 106 trajectories, where δτ is based on the variable y, as in Fig. 1. The time instants t of observation are indicated
in the panels and are taken from a stationary and a changing climate.

any intermediate value for τ for which an SRT average
would estimate well the ensemble average from a practical
point of view. It is worth introducing a further quantity for
characterizing the magnitude of the error an SRT average is
expected to carry. We choose the ensemble average Aμ(|δτ |)
of the modulus of the nonergodic mismatch since this might be
the simplest and the most natural quantity for this purpose: it
is the expected distance of an SRT average from the ensemble
average, i.e., the expected error of the SRT average. We shall
callAμ(|δτ |) the ergodicity deficit with a time window of length
τ , associated to a particular time instant t of observation.

Note that the ergodicity deficit is nonzero for any finite value
of τ in both stationary and changing climates, corresponding
to ergodic and nonergodic cases, respectively. In a stationary
climate, when there is no bias, the ergodicity deficit originates
solely in the spread among the individual realizations. In such
cases Aμ(|δτ |) is expected to carry the same information as
σμ(δτ ).

In a changing climate, similarly to a stationary climate,
the ergodicity deficit Aμ(|δτ |) describes the spread among the
different realizations as long as the bias Aμ(δτ ) is small. This
is so for small values of τ . For increasing τ , however, the bias
Aμ(δτ ) plays a more and more important role in determining
the ergodicity deficit Aμ(|δτ |). Finally, for large values of τ ,
Aμ(|δτ |) and |Aμ(δτ )| become approximately the same: the
spread of the pdf P (δτ ) drops sooner or later well below the
modulus |Aμ(δτ )| of the bias.10

We illustrate these considerations in Fig. 4 by plotting
together the τ dependence of the bias Aμ(δτ ), of the spread
σμ(δτ ), and of the ergodicity deficit Aμ(|δτ |), for the same
two time instants t of observation as in Fig. 1. In Fig. 4(a),

10In systems with a generic time dependence, there may occur
arbitrarily large values of τ for which the bias Aμ(δτ ) happens to
be zero, but such values of τ are exceptional along the complete τ

axis and depend strongly on the time instant t of observation (cf.
Appendix C). If the natural measure changes smoothly in time due to
a monotonic parameter shift such values of τ typically do not exist at
all.

taken in a stationary climate, the ergodicity deficit Aμ(|δτ |) is
practically a rescaled version11 of the spread σμ(δτ ).

In the changing climate case of Fig. 4(b), the ergodicity
deficit Aμ(|δτ |) describes the spread σμ(δτ ) for small values
of τ , up to about τ = 20 yr. For increasing τ , the bias Aμ(δτ )
increases from zero to considerable values, and this is clearly
seen to influence the functional dependence of the ergodicity
deficit Aμ(|δτ |) on τ . Finally, as anticipated, Aμ(|δτ |) and
Aμ(δτ ) “merge,” along with the decrease of the spread σμ(δτ ).
In our particular case this is already observed when reaching
τ = 100 yr, as a consequence of the negligible probability for
δτ < 0, as Fig. 1(b) illustrates. In total, one can observe that the
τ dependence of the ergodicity deficit Aμ(|δτ (t)|) follows very
closely the larger out of the values of the spread σμ(δτ (t)) and
of the bias Aμ(δτ (t)), i.e., Aμ(|δτ |) ≈ max (σμ(δτ ),|Aμ(δτ )|).
The ergodicity deficit Aμ(|δτ |) thus incorporates in general
both effects, the spread and the bias, that lead to the deviation
of an SRT average from the corresponding ensemble average.
In addition, Aμ(|δτ |) provides a natural quantification for this
error of an SRT average. In the particular case of Fig. 4(b) this
deviation is never small, any statistics extracted from the time
evolution of a single realization is thus always meaningless
from a probabilistic point of view. We emphasize that this
conclusion, according to our argumentations, is expected to
hold in any chaoticlike dissipative dynamical system that
changes in time relatively fast.12

Our original definition (7) of the nonergodic mismatch is
restricted to averages. We emphasize that all of our results
hold for more general statistical quantities. This is illustrated
numerically in Appendix B.

11By assuming a Gaussian shape for P (δτ ), the rescaling factor is√
2/π ≈ 0.798. Numerically, the ratio is found to be approximately

0.809 for small τ , and to converge rapidly to
√

2/π for increasing τ :
it is already 0.799 for τ = 25 yr.

12That is, if the autocorrelation time of any ensemble average is not
longer than the time during which a single time series “forgets” its
initial conditions.
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IV. CONCLUSIONS AND DISCUSSION

Three relevant quantities have been introduced for charac-
terizing nonergodicity: (i) The bias Aμ(δτ (t)) measures how
different the system is from an ergodic system when observed
in a time window of length τ around a particular time instant
t . Aμ(δτ (t)) is an order-parameter-like quantity which can
differ from zero in nonergodic systems only. (ii) The spread
σμ(δτ (t)) indicates how unrepresentative a single-realization
temporal average, taken with a given window length τ , is
for the ensemble behavior. (iii) Finally, the ergodicity deficit
Aμ(|δτ (t)|) stands for the expected error of a single-realization
temporal average when estimating the ensemble average at t .
The last two quantities, in contrast to the bias, are nonzero in
both ergodic and nonergodic systems, due to the finite length
τ of the time window.

In our experience, the bias Aμ(δτ (t)) usually increases in
magnitude and never approaches zero with increasing window
length, provided that a nonperiodic driving is present. This
means that the ergodic theorem does not hold in such systems.
Furthermore, we found that the ergodicity deficit Aμ(|δτ (t)|)
lies close to the larger out of the modulus |Aμ(δτ )| of the
bias and the spread σμ(δτ (t)). Given the tradeoff situation that
the spread, in contrast to the bias, increases with decreasing
window length, one is not able to arbitrarily reduce the
ergodicity deficit, i.e., the expected error of a single-realization
temporal average, in the presence of a nonperiodic driving.

We emphasize that even if the bias Aμ(δτ ) happens to be
0, observations over finite window lengths τ exhibit a nonzero
ergodicity deficit, Aμ(|δτ |) > 0, due to the spread between
different realizations which is characterized by σμ(δτ ) > 0.
If this was to be catered for by increasing τ , it might well
be that precious little is achieved due to the slow scale-free
decay of the spread σμ(δτ ) with τ . Since aperiodically driven
nonautonomous systems are generic in nature, it can be
expected that by increasing τ there will always be a value
beyond which the bias Aμ(δτ ) becomes nonzero, also yielding
a contribution to the ergodicity deficit.

This would be so, e.g., in the stationary climate of our
model system if we let the time windows of length τ reach
into the t > 0 interval. By constraining τ to avoid this situation
we could successfully analyze the properties, within a finite
temporal regime, of a hypothetic eternal stationary climate
in which ergodicity (defined via τ → ∞) is fulfilled. This
indicates that it may be useful to talk about ergodic regimes in
time even if the complete dynamical system is not ergodic. We
suggest ergodic regimes to be recognized by Aμ(δτ (t)) = 0 up
to a certain value of τ .

It is clear from, e.g., the above discussion that the bias, the
spread, and the ergodicity deficit depend on the time instant
t , i.e., they exhibit a time evolution. This time evolution may
be nontrivial. Its detailed discussion for our particular model
system is given in Appendix C.

We note that a recent approach [15] in the mathematics
literature formally restores ergodicity also in nonautonomous
dynamical systems by redefining temporal averages. This
approach is artificial from a physical point of view, because it
transforms formal temporal averages to ensemble averages. As
illustrated in Appendix E, we numerically found these artificial
temporal averages to tend to the ensemble averages (taken with

respect to the natural measure) with the increasing length of
the time window for averaging, both in the stationary and in the
changing climate of our model system. This ergodicity concept
thus makes no distinction between what we called ergodic and
nonergodic cases so far.

The advantage of knowing whether a system is ergodic
or nonergodic lies in the fact that in the former case the usual
theories of dynamical systems, e.g., the ones based on periodic
orbits (see, e.g., [2,6]) are likely to be applicable, while other-
wise only the snapshot attractor approach remains. This branch
of research is currently rapidly evolving and sheds light on
phenomena not only in the climatic context (see, e.g., [48–50]),
but also on general aspects of dynamical systems, like, e.g.,
transitions in many degree of freedom chaotic systems [51].
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APPENDIX A: SNAPSHOT ATTRACTOR OF
THE CLIMATE MODEL EXAMPLE

Equations (1)–(3) are numerically solved by the classical
fourth-order Runge-Kutta method with a fixed time step
�t = 0.005 ≈ 6.85 × 10−5 yr. In order to generate the natural
measure of the snapshot attractor at time t , we start a large
number, N = 106, of trajectories distributed uniformly in a
box [−1.5,3.5] × [−2.5,2.5] × [−2.5,2.5] at a negative time,
t0 = −250 yr, and monitor the full ensemble up to time t

(which can be either positive or negative). This ensemble
of trajectories is used throughout the paper to represent the
natural measure. As demonstrated in [30], the convergence
time to the snapshot attractor and its natural measure is about
tc = 5 yr, and thus the ensemble can be considered to represent
the natural measure well for t > t0 + tc. Before the onset of
the climate change, t = 0, the snapshot attractor is also a usual
attractor since the driving is periodic. The attractor and its
natural measure is of course nonperiodically time dependent
in the climate change period, i.e., for t > 0. Numerically we
investigate the time interval [−150yr,150yr]. After 150 yr the
dynamics (1)–(3) loses internal variability along the ramp (3),
and we do not consider time instants before −150 yr in order
to provide a symmetric investigation.

In order to obtain an impression on how an ensemble
average, and also the snapshot attractor and its natural measure
μ(t) themselves, evolve in time, we choose ϕ = y. In Fig. 5(a)
we plot the ensemble average Aμ(y(t)), and the projection
of the natural measure onto the variable y, as a function of
time. In particular, we numerically approximate the natural
measure by a histogram, coded by the brightness, in every
considered time instant. The ensemble average Aμ(y(t)) can
be evaluated numerically by integrating y with respect to
this histogram as a density, but it is more efficient to simply
calculate the arithmetic mean of all the y values in the ensemble
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FIG. 5. (a) Histogram over y (coded by the brightness), and the
ensemble average Aμ(y) [red (gray in print) “continuous” line] as
a function of time, taken at t mod T = T/4 time instants, calculated
over a numerical ensemble of 106 trajectories. The bin size of the
histogram is 0.025. (b) Intersections of the snapshot attractor with
the (x,y) (i.e., the z = 0) plane conditioned by ż > 0 in the particular
years indicated in the particular plots. These years are marked in
panel (a) by black circles.

at time t .13 We wish to eliminate effects that arise from the
annual component of the driving, so that we take only one
time instant from every time period T (a given “day” of the
year). In particular, we select the midwinter days, i.e., the time
instants that satisfy t mod T = T/4 where the sine in (2) has
a maximum. This way we obtain a stroboscopic map.

13Aμ(ϕ(t)) = 1
N

∑N

i=1 ϕi(t) is generally true for N � 1, because
the particular trajectories sample the phase space according to the
natural measure (after tc, of course).

The stationary climate appears very clearly as a time-
independent pattern in Fig. 5(a) before t = 0. For t > 0 a very
complicated time evolution can be seen. Besides a typically
smooth change of the support [the blue interval (shaded gray
in print) at a given time instant in Fig. 5(a)] of the natural
measure, the density on this support changes dramatically all
the time, and this underlies the irregular time dependence of
Aμ(y(t)) (see also [30]). Figure 5(b), showing intersections of
the snapshot attractor with the (x,y) plane in different time
instants, indicates that the snapshot attractor has, at any time,
a clear filamentary structure. This structure is seen to have a
time dependence during the changing climate period (t > 0)
only.

APPENDIX B: STATISTICS BEYOND THE AVERAGE

The nonergodic mismatch δτ (for any variable ϕ) can be
defined not only for averages in (7), but also for other statistical
quantities of interest. For example, the nonergodic mismatch
δ(n)
τ for the nth cumulant C(n)

μ of the variable ϕ is defined as

δ(n)
τ (t) = C(n)

τ (ϕ(t)) − C(n)
μ (ϕ(t)), (B1)

where C(n)
τ is the estimator of the nth cumulant evaluated on

the time window of length τ .14 [Note that δτ (t) = δ(1)
τ (t).] The

advantage of using δ(n)
τ , n > 1, is that Aμ(δ(n)

τ ) is never zero
in a nonergodic case, not even in the very unlikely situation
when the time evolution of the ensemble average Aμ(ϕ(t)) is
exactly a linear function, and therefore Aμ(δ(1)

τ ) = 0, at least
with the midpoint convention.

For illustrative purposes we plot in Fig. 6 the τ dependence
of the three most important characteristics of the nonergodic
mismatch δ(2)

τ based on the variable ϕ = x (the speed of the
Westerlies). Two neighboring time instants t are chosen, both
corresponding to a changing climate. The graphs of the τ

dependence in Fig. 6(a) are similar to those of Fig. 4(b);
this picture can thus be considered generic. In Fig. 6(b),
however, the bias Aμ(δ(2)

τ ) remains significantly smaller than
the spread σμ(δ(2)

τ ) for any considered value of τ . This leads to
completely different ergodicity deficit functions Aμ(|δ(2)

τ |) in
the two plots. As these two plots are separated by a single year,
this experience implies that certain aspects of the particular
behavior of the most important characteristics of a nonergodic
mismatch δ(n)

τ can depend strongly on the time instant t of
observation. Note, however, that the shape of the bias functions
Aμ(δ(2)

τ ) is practically the same in the two plots, just shifted by
a constant. This is not surprising, because the single-realization
temporal (SRT) statistics contain almost the same information
in the two cases, due to the small separation in t . This implies
that the ensemble statistics, C(2)

μ (x(t)), has to be very different

14In order to see that Aμ(δ(n)
τ (t)) = 0 in ergodic cases we require the

use of the unbiased estimators of the population statistics from sample
data. For example, the second cumulant C(2)

μ (ϕ(t)) taken with respect
to the natural measure μ is estimated correctly from the numerical

ensemble as C(2)
μ (ϕ(t)) = 1

N−1

∑N

i=1 (ϕi(t) − 1
N

∑N

j=1 ϕj (t))
2

where
ϕi(t) corresponds to the ith member of the ensemble at time t . The
estimation is similar for the second cumulant C(2)

τ (ϕ) taken along a
single realization.
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FIG. 6. The bias Aμ(δ(2)
τ ), the spread σμ(δ(2)

τ ) and the ergodicity deficit Aμ(|δ(2)
τ |) from the nonergodic mismatch δ(2)

τ of the second cumulant
based on the variable x of the model (1)–(3), as functions of the window length τ . The time instants t of observation are indicated in the panels
and are taken from a changing climate. Note that Aμ(δ(2)

τ ) is not identically zero either in year 76, which indicates nonergodicity for this year,
too. The numerical ensemble, consisting of 106 trajectories, is the one described in Appendix A.

in these two neighboring time instants. This is in harmony with
the complicated time evolution of the natural measure, as seen
in Fig. 5(a). In particular, Fig. 8(b) of the next section shows a
jump between years 75 and 76 in the quantity C(2)

μ (x(t)).

APPENDIX C: TIME DEPENDENCE OF
AVERAGES AND VARIANCES

So far we have investigated only few different time instants
t of observation. From Figs. 5(a) and 6, however, one may
expect the time evolution of the pdf P (δ(n)

τ ) of a nonergodic
mismatch δ(n)

τ [as introduced by (B1)] to be rich. In Fig. 7 we
plot histograms of δ(n)

τ , n = 1,2, such that the time window
τ is fixed but different time instants t of observation are
chosen from both the stationary and the changing climate
of our Lorenz 84 scenario. In the two panels we take δτ

for the variable y and δ(2)
τ for the variable x. The first two

histograms in each panel [red and green (see the legend in
print)], belonging to the stationary case, practically coincide
and are symmetric with respect to zero. The next three are,
however, completely different. The maxima (mean values)
do not change here monotonically in time: in Fig. 7(a), for

example, the histogram is centered on a negative value right
after the climate change, then it becomes shifted to a large
positive one, and ends at a moderate positive value. Smaller
but significant changes can be seen in Fig. 7(b). The pdf P (δ(n)

τ )
of a nonergodic mismatch δ(n)

τ is thus dramatically changing
in time in the model (1)–(3).

Figure 8 explores the time evolution of P (δτ (t)) for the
variable y and of P (δ(2)

τ (t)) for the variable x via their
ensemble average Aμ and standard deviation σμ. For a
better understanding, the two terms composing Aμ(δτ (t)) [or
Aμ(δ(2)

τ (t)) in panel (b)], i.e., the ensemble averages Aμ(y(t))
and Aμ(Aτ (y(t))) [or C(2)

μ (x(t)) and Aμ(C(2)
τ (x(t))) in panel

(b)], are also shown in a separate plot. The examples plotted
in panels (a) and (b) are seen to be qualitatively very similar.

A nonzero bias Aμ(δ(n)
τ (t)), n = 1,2, only appears in Fig. 8

in the climate change period,15 indicating nonergodicity. In

15More precisely, a nonzero value is present after −τ/2, even
before the beginning of the climate change in t = 0, because the
SRT statistics are ordered to the window centers. The use of lagging
windows (when the SRT statistics are ordered to the endpoints of
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FIG. 7. The time dependence of the histograms (a) P (δτ (t)) of the variable y and (b) P (δ(2)
τ (t)) of the variable x, with a fixed window length

of τ = 72 years, calculated over the numerical ensemble of N = 106 trajectories. In any single panel we compare different time instants t of
observation. The bin size is 0.025. Note that the lines for the two first time instants almost overlap.
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FIG. 8. The time dependence of a few characteristic statistical measures of the natural measure as indicated in the legend (derived from the
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τ (t)) in panels (a) and
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concerns the average in the variable y, and panel (b) concerns the second cumulant in the variable x. The window length is τ = 72 yr. The time
instants considered in Fig. 7 are marked by vertical gray dot-dashed lines. Observe that σμ(δ(n)

τ (t)) and Aμ(|δ(n)
τ (t)|), n = 1,2, lie very close to

each other for t < 0.

this period, accordingly, the component Aμ(Aτ (y(t))) [or
Aμ(C(2)

τ (x(t))) in panel (b)], arising from SRT statistics, can
be seen to deviate from the instantaneous ensemble average
Aμ(y(t)) [or the second cumulant C(2)

μ (x(t)) in panel (b)].
The corresponding SRT component is much smoother than
the ensemble average (or second cumulant16). The strong
fluctuations observable in the bias Aμ(δτ (t)) [or Aμ(δ(2)

τ (t))
in panel (b)] thus originate in the ensemble average Aμ(y(t))
[or the second cumulant C(2)

μ (x(t)) in panel (b)]. The presence
of fluctuations in the latter is a characteristic of the temporal
evolution of the snapshot attractor and of its natural measure
in our particular model. Due to the fluctuations in the bias
Aμ(δ(n)

τ (t)), n = 1,2, as a function of t , the bias repeatedly
crosses the value of zero, with a fixed τ . These crossings
compose, however, a set of measure zero on the time axis t ,
and the set would change for other choices of τ . Therefore, the
bias Aμ(δ(n)

τ (t)), n = 1,2, indicates faithfully the nonergodic
property either if one takes finite intervals for the time of
observation t or if one investigates multiple choices for the
window length τ .

the windows) would restrict the nonzero vales to the climate change
period strictly.

16From Fig. 8 one might guess that Aμ(C(2)
τ (x(t))) is a moving

average of C(2)
μ (x(t)). We numerically verified, however, that

Aμ(C(2)
τ (ϕ(t))) − Aτ (C(2)

μ (ϕ(t))) �= 0. (C1)

As for the spread σμ(δ(n)
τ (t)), n = 1,2, it is surprisingly

close in Fig. 8 to a constant during both the stationary and
the changing climate period. This means that the spread of the
individual realizations has, when the underlying probability
measure changes in time, approximately the same importance
in SRT statistics as when it does not change. This is in harmony
with the observation that the nonergodic mismatch pdfs in
Fig. 7, with a fixed window length, move in time but do not
change their shape or width. This is likely a consequence of
the pdfs being determined only by the laws of large numbers
(cf. Sec. III B).

The ergodicity deficit Aμ(|δ(n)
τ (t)|), n = 1,2, is found in

Fig. 8 to lie away from zero during its full time evolution,
i.e., the error of the single-realization temporal statistics is
always considerable. This means again that a single realization
cannot be used for extracting relevant information about the
instantaneous ensemble properties. One sees, furthermore, that
the ergodicity deficit Aμ(|δ(n)

τ (t)|) is very close, during the
full time evolution, to the larger of the values of σμ(δ(n)

τ (t))
and |Aμ(δ(n)

τ (t))|. This is in harmony with the behavior of
Aμ(|δ(1)

τ (t)|) in Fig. 4 corresponding to particular time instants
but showing different possible values for τ .

APPENDIX D: RESULTS IN ADDITIONAL
EXAMPLE SYSTEMS

In order to illustrate that our results are generic, we carry out
the main investigations with two additional driving functions
in the Lorenz 84 model, and also with two similar driving
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FIG. 9. Results concerning the nonergodic mismatch δτ based on the variable y in the Lorenz 84 model driven by a double ramp, calculated
for a numerical ensemble of 5 × 105 trajectories. (a)–(c) The ergodicity deficit Aμ(|δτ |), compared to the magnitude |Aμ(δτ )| of the bias and to
the spread σμ(δτ ), as a function of the window length τ . The time instants t of observation are indicated in the panels. (d) The time dependence
of a few characteristic statistical measures as indicated in the legend. The window length is τ = 72 yr. The driving function F0(t) is indicated
in the bottom plot, in orange (gray in print). The time instants considered in panels (a)–(c) are marked by vertical gray dot-dashed lines.

functions in a completely different dynamical system, the well-
studied Hénon map.

As our first new driving function [see the orange line (gray
in print) in the lowest part of Fig. 9(d)—we call it a double
ramp in what follows] in the Lorenz 84 model, we start with
a stationary climate with a different value of F0 compared
to the original setup, include a first ramp with a different
slope, and, after a plateau, include a symmetric ramp back
to reach another plateau with the starting value of F0. By
this choice we test the sensitivity to the details of the driving
function when its main characters are kept. Corresponding
numerical results are shown in Fig. 9 and are very similar
to those of Figs. 4(b), 6 and 8, i.e., to those of the original
setting.

Next we take a driving function of very different nature: an
ever-changing, quasiperiodic signal [see the orange line (gray

in print) in the lowest part of Fig. 10(d)]:

F0(t) = 8.5 + 0.5 cos
( ω

10
t
)

+ 0.5 cos
( ω

5π
t
)
. (D1)

The frequencies are chosen such that they are much smaller
than the seasonal frequency ω = 2π/T [see Sec. II, and Eq. (2)
in particular]. By obtaining, as exhibited in Fig. 10, the same
qualitative behavior as with the original driving function we
confirm that our results and conclusions are not sensitive to
the particular form of the nonperiodic driving.

So far we considered the Lorenz 84 model which is defined
in continuous time, and our version contained also a periodic,
relatively fast component (the seasonal component) in the
driving, the effect of which was then filtered out (cf. Sec. II).
The idea of testing our conclusions in a different dynamical
system naturally arises. For this purpose, we take a map in
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FIG. 10. Same as Fig. 9 for the Lorenz 84 model driven by the quasiperiodic signal (D1), calculated for a numerical ensemble of 5 × 105

trajectories.

which there is no need to filter out some component of the
dependence on “time.” In particular, we choose the Hénon map,
because its properties are well understood [6]. We consider the
form

xt+1 = 1 − αtx
2
t + yt , (D2)

yt+1 = 0.32xt , (D3)

where t represents discrete time, and the coefficient 0.32 is
chosen to provide a regime in α, α ∈ [1.15,1.35], where only
tiny periodic windows exist in the autonomous system with
αt = const. This property is needed because the existence of
a unique natural measure in the nonautonomous system is
guaranteed only if the dynamics is irregular [15], and this kind
of dynamics arises if chaos dominates the autonomous system
in the corresponding parameter regime.

We vary the parameter αt within the mentioned regime
according to two functions similar to those applied in the
Lorenz 84 model. The double ramp is given as the orange

line [the line in the bottom plot (gray in print)] in Fig. 11(d),
while the quasiperiodic signal reads as

αt = 1.25 + 0.05 cos

(
2π

100
t

)
+ 0.05 cos

(
1

25
t

)
, (D4)

which is also illustrated, in the bottom plot of Fig. 12(d) (in
orange [gray in print]). The corresponding numerical results in
Figs. 11 and 12 demonstrate clearly that the main conclusions
for the bias and for the ergodicity deficit (as detailed in the
main text) hold also in this system. This is so in spite of the
fact that the particular functional forms of these quantities (as
functions of the window length τ and time t) in Figs. 11 and
12 considerably differ from those in Figs. 9 and 10.

APPENDIX E: ANALYZING AN ALTERNATIVE
CONCEPT OF ERGODICITY

Ergodicity is generally defined via temporal statistics along
a single realization. In the literature, however, an alternative
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FIG. 11. Same as Fig. 9 for the Hénon map (D2)–(D3) driven by a double ramp, calculated for a numerical ensemble of 5 × 105 trajectories.

definition showed up recently [15], relying on an unusual
way of taking temporal averages and with an ensemble of
trajectories. The members of this ensemble are initiated at
different time instants. This definition corresponds in effect
to an average taken over the endpoints of these members,
although the averaging is formally expressed by an integral
over time.

More precisely, let a value of the observable ϕ at time t

be denoted by ϕ(t ; t0,x0) that emerges from an (arbitrarily
chosen) initial position x0 of the phase space at time t0. An
artificial time average over a window of length τ (ordered to the
final instant t) can be evaluated [15] by considering different
trajectories of temporal length t − t ′ which start from the same
initial position x0 at time t ′ � t and yield the value ϕ(t ; t ′,x0)
at the final instant t , then integrating these values over the time
instants t ′ as

1

τ

∫ t

t−τ

ϕ(t ; t ′,x0)dt ′. (E1)

We call this average artificial because the integration is taken
over the initial time instants t ′, and this is impossible to carry

out in any single time series. In fact, this integration defines
an averaging over the endpoints of trajectories initiated in
different time instants. This is why this average is essentially
also an ensemble average in itself.

Reference [15] claims that it is usual among nonau-
tonomous dynamical systems that for almost every initial
position x0 in the phase space the following ergodic property
is satisfied:

lim
τ→∞

1

τ

∫ t

t−τ

ϕ(t ; t ′,x0)dt ′ = Aμ(ϕ(t)), (E2)

for any sufficiently smooth observable ϕ. Relation (E2) was
originally formulated for a random dynamical system in
Ref. [15]; we apply it here to a deterministic nonautonomous
case. Qualitatively speaking, the left hand side of (E2) is an
average of points on the snapshot attractor belonging to time
instant t since trajectories rapidly forget their initial conditions
(after time tc), due to dissipation. The endpoints of only those
trajectories are not on the attractor that started at t ′ > t − tc,
but they form a negligible proportion of all the trajectories
taken (with the exception of small values of the window
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FIG. 12. Same as Fig. 9 for the Hénon map (D2)–(D3) driven by the quasiperiodic signal (D4), calculated for a numerical ensemble of
5 × 105 trajectories.

length τ ). One thus expects that for window lengths τ � tc,
the endpoints populate the snapshot attractor representing
faithfully its natural measure, and the two sides of (E2) are
then practically equivalent. It is intuitively appealing that such
a relation, generalizing Birkhoff’s ergodic theorem for general
nonautonomous systems, may exist, but one must not forget
that the time average on the left hand side is not the natural
time average over a time series.

For any particular initial value x0 we define the nonergodic
mismatch dτ with this artificial time average on a window
length τ as17

dτ (t) = 1

τ

∫ t

t−τ

ϕ(t ; t ′,x0)dt ′ − Aμ(ϕ(t)). (E4)

17The nonergodic mismatch δτ based on a lagging window, like
here, would read, instead of (7), as

δτ (t) = 1

τ

∫ t

t−τ

ϕ(t ′)dt ′ − Aμ(ϕ(t)). (E3)

Similarly to δτ (t), dτ (t) has a probability distribution, nu-
merically obtainable from different initial positions x0. The
observable ϕ may be a dynamical variable, we choose ϕ = y

in the Lorenz model.
We plot the numerically obtained pdf P (dτ (t)) of the

nonergodic mismatch dτ (t) [calculated with a yearly sum
instead of an integral in (E4)] for the variable y in Fig. 13
for the same three window lengths τ and two time instants t

(one in the stationary and one in the changing climate) as in
Fig. 1. In both kinds of climate, the distributions appear to be
symmetric with respect to zero, and their width shrinks with
increasing τ . This indicates that a changing climate is similar
to a stationary one from the point of view of the ergodicity
concept in (E2).

For a more detailed investigation, we plot in Fig. 14 the τ

dependence of the bias Aμ(dτ ), of the spread σμ(dτ ), and
of the ergodicity deficit Aμ(|dτ |) for the same two time
instants t as in Fig. 13. As mentioned, the endpoints of
trajectories initiated at time instants t ′ > t − tc are not yet on
the snapshot attractor. As long as such trajectories dominate
the “integral” in (E4), the bias Aμ(dτ ) differs from zero
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FIG. 13. The pdf P (dτ (t)) of the nonergodic mismatch dτ (t) (E4) based on the variable ϕ = y of (1)–(3), calculated over a numerical
ensemble of N = 10 000 trajectories. In each panel we compare three different values of the window length τ . The time instants t of observation
are as in Fig. 1. The bin size is 0.025.

considerably, which is a feature that is not common with
Aμ(δτ ). This is seen up to τ < tc ≈ 5 yr in Fig. 14. For larger
τ , however, the bias Aμ(dτ ) takes on the value of zero. The
spread σμ(dτ ), of course, converges to zero as well [we find
that it follows the same power law as σμ(δτ ) in Fig. 3]. As
a consequence, the ergodicity deficit Aμ(|dτ |) also converges
to zero with increasing τ , which means that the difference

between “temporal” and ensemble averages disappears. We
conclude that the alternative ergodicity concept of Ref. [15] is
trivially fulfilled in our deterministic system, and presumably
also in any typical nonautonomous system.

In a sense, this alternative view artificially eliminates the
striking difference between ergodic and nonergodic cases,
expressed, e.g., by Fig. 2 or Fig. 4.
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time instants t of observation are indicated in the panels.
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