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Part I. The Southern Oscillation Index in a changing climate

The Southern Oscillation Index (SOI) is one of the most important climate indices; it is used to detect changes in ENSO both
for the past and in predictions (Power and Kociuba, 2011). There are different definitions for the SOI, but all of them agree in
using temporal averages. For simplicity, let us take the station-based definition by the Bureau of Meteorology of the Australian
Government (BOM), which is also called the Troup SOI (Troup, 1965):

SOI= 10
p diff (t )− pdiff (t )

√ pdiff (t )2− pdiff (t )2
. (S1)

Here pdiff is the difference between the mean sea level pressures at Tahiti and Darwin for a particular month (in our paper, we
allow for seasonal means as well). The overbar denotes long-term average over some fixed interval of time (e.g. between 1920
and 1950). What is called a La Niña (El Niño) phase corresponds to a positive (negative) value of the SOI if its magnitude
exceeds 7 according to BOM.

The problem with (S1) is two-fold.  First, the time averages are constants, so that pdiff, the only time-dependent term, includes
climatic trends instead of characterizing solely anomalies with respect to the instantaneous climatic mean (which is changing in
time itself). This problem is illustrated well by considering different climatologies, i.e.,  taking the temporal averages over
different time intervals: it turns out that the values of SOI can be dramatically misleading. Supplementary  Fig. S1 shows that
we obtain several years when we can identify even both La Niña or El Niño phase depending on the applied climatology. See
also Supplementary Discussion I of Herein et al. (2017).

Although  there  exist  sophisticated  methods  for  removing  trends  from  time  series,  they  can  resolve  the  problem  only
approximately without an a priori knowledge of what should be identified as a trend (i.e., how the real expectation value of a
given quantity evolves in time). Furthermore, the experience of Herein et al. (2016) and Herein et al. (2017) indicates that time
averages of relevant quantities taken over single time series are influenced by internal  variability too much to be able to
represent expectation values faithfully. Note that both problems are present for any traditional definition of SOI (or that of any
climate index), including those that normalize the sea-level pressures first and take the difference afterwards (e.g. Trenberth,
1976; 1984).

All conceptual problems are resolved, however, by a new, snapshot-based SOI (which we denote by SOIE):

SOI E=10
pdiff (t )−〈 pdiff ( t )〉

√〈 pdiff (t )2〉−〈 pdiff ( t )〉2

, (S2)

where <...> denotes averaging with respect to the ensemble in the given time instant t (but only after convergence took place).
Evaluating the averages as such ensures the incorporation of the correct properties of the underlying probability distribution. In
particular, SOIE gives the deviation of pdiff of one given realization (note that this is the modeling equivalent of an instrumental
record) from the expectation value of pdiff, normalized by the standard deviation. This is so in any year, as a consequence of
which a natural detrending is provided: the climatic mean of SOIE is always zero, and the climatic standard deviation of it is
always unity times 10.

Note that due to the perpetual zero mean and constant standard deviation, signatures of climate change may be observed only
in higher moments of snapshot-based indices or anomalies, like (S2), so that shifts towards a particular phase or sign cannot
exist in the sense of averages. On the contrary,  climate change (a response to external forcing) is obviously detectable in
ensemble means of non-detrended quantities, see e.g. Supplementary Fig. S2, and Section 5 in the main text.
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Supplementary Fig. S1. The traditional Troup SOI (S1) for the month of November, in the first realization of CESM-LE, as a
function of time. Panel (a) shows SOI calculated with a standard climatology (1920-1950), panel (b) shows the same with a

different climatology (2070-2100). For the climatology the model data have been used. pdiff of (S1) has been calculated
according to Appendix B.

Supplementary Fig. S2. The November sea level pressure difference (pdiff) between Tahiti and Darwin versus time, in the first
realization of CESM-LE (blue), and after averaging over the ensemble instantaneously (red). Grey color indicates all further

members of the 35-member ensemble of CESM-LE. The ensemble average shows an enhanced increase (a "hockey stick") after
the year 2050. pdiff has been calculated according to Appendix B.
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Part II. Accommodating correlations in the Mann-Kendall test

The original Mann-Kendall test (Mann, 1945) assumes no correlations in the time series. A modified Mann-Kendall test was
developed by Hamed and Rao (1998) that relaxes this assumption. However, the application of the modified test results in p-
values of the same order of magnitude as that of the original test for all ensembles, which does not alter the significance of the
test result in any of the cases. In what follows, we shall concentrate on the MPI-HE, since this is the only one in which we
obtained p-values below 0.05, resulting in the rejection of the null hypothesis.

Obtaining very similar p-values by the original and the modified tests is clearly to do with very weak correlations in the time
series,  if  any.  This  is  indicated  by  a  straightforward  calculation  of  the  temporal  autocorrelation  function  displayed  in
Supplementary Fig. S3a. For this we employed the Matlab function ‘autocorr’. Note, however, that the usual autocorrelation
function evaluated by an integral over time is well-defined only in the case of stationary processes. In the presence of a trend
the estimated correlations are, in principle, not meaningful. Fortunately, the shape of the investigated distribution (a Gaussian)
and its standard deviation ( 1 /√ (N −3 ) , where N is the ensemble size) are constant (Fisher, 1936), so that a detrending of the
mean of the distribution would transform the time series to that of a stationary process.

Clearly, it is not possible to correctly detrend the data, because the signal that we need to subtract is unknown. In fact, this is
the signal  of  central  interest,  and  all  we  attempt  is  to  decide  whether  it  is  very  likely  not  stationary,  i.e.,  not  constant.
Nevertheless, when differences in the subsequent data points in the noisy signal (where noise is due to the finite size of the
ensemble in our case) are much bigger than the corresponding differences in the true signal, then differencing (i.e., numerically
differentiating) naturally results in a well-detrended signal. Applying this assumption is prompted to be correct by the fact that
the sample standard deviation of the  z signal (calculated over time) is measured to be 0.1037, while the true value for a
stationary z, calculated as 1 /√ (N −3 ) , would be 0.1015, which is very close to the previous value.

Furthermore, we can obtain a kind of a linear estimate for the true signal by fitting a linear trend as a function of the radiative
forcing Q (see Supplementary Table S4 and the related discussion in part VII of the Supplementary Material). In this signal, we
can  take  the  numerical  absolute  difference  between  the  consecutive  data  points  (i.e.,  years).  The maximal  value  of  this
difference  along the  time  series  is  0.0680,  and  it  is  below 0.01  for  the  majority  of  the  years.  As  these  differences  are
considerably  smaller  than  the  above-mentioned  values  for  the  standard  deviation,  we  obtain  a  further  support  for  the
assumption that the incremental changes originating from the numerical noise dominate the trend in the original time series of
z.

It can be shown easily that the differencing of an uncorrelated stationary signal leads to a  −1/2 lag-1 autocorrelation. Since
quite precisely this value is seen in the autocorrelation function of the differenced z signal in Supplementary Fig. S3b, we can
conclude that any undetected correlation in the z signal should be rather small.

The question still is what the error is of the p-value of the original MK test due to the possible small correlations, i.e., to the
violation of the test’s assumption. The state-of-the-art answer to this question is given by the modified MK test, namely, that
the error is rather small. We mention that the implementation of the modified MK test that we used employs only linear
detrending, which is not correct. Nevertheless, with two different linear detrending schemes, one with the usual least-squares
method and another fitting method due to Sen (1968), very similar p-values are found: 4.110−5 with the former, and 1.0510−4

with the latter (cf. p = 2.110−5 for the original MK test, already given Table 1). This seems consistent with the claim that the
incorrect  detrending  in  this  case  would  not  introduce  an  error  that  would  alter  the  significance  of  the  detection  of
nonstationarity.
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Supplementary Fig. S3. The autocorrelation function of (a) zi and (b) (zi − zi-1) for the MPI-HE (where the index of zi refers to
the data point, i.e., to the year). The horizontal blue lines correspond to the interval outside which the correlation coefficient is

different from zero at the significance level of 0.05.
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Part III. Effects of the ensemble size

To check whether the ability to pose stronger statements for the MPI-HE in Table 1 originates from the larger size of this
ensemble, we take 10000 examples of smaller subsets of the MPI-HE that are of the same size as the other three ensembles
(77, 68, and and 35 members,  respectively),  and calculate the proportions  q (a Monte Carlo-type probability  P) in which
stationarity is rejected according to pt12 and pMK0. Given in Supplementary Table S1, the high proportions for the 77-member
and the 68-member subsets of the MPI-HE suggest that failing to reject stationarity in the MPI-RCP8.5E or the MPI-1pctE is
not due to their smaller size. The more moderate proportions for the size of 35 members leaves the same question open for the
CESM-LE.

q = P(pt12 < 0.05) q = P(pMK0 < 0.05)

77 members 0.99 0.999

68 members 0.96 0.99

35 members 0.55 0.69

Supplementary Table S1. The proportion q in 10000 subsets of the MPI-HE of given size in which pt12 < 0.05 and pMK0 < 0.05,
respectively.
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Part IV. The forced response of the correlation coefficient as obtained by evaluation over time

We shall illustrate here that the traditional technique for evaluating correlation coefficients and for investigating their time
evolution can lead to strongly misleading results in our case. The traditional technique takes a single realization, and calculates
the correlation coefficient with respect to time within some given time interval, a window, of length Δt. The time evolution of
the correlation coefficient is obtained in this case by moving (sliding) this window along the time series. Since forced trends
can obscure the relationship between the fluctuations, some kind of detrending of the two time series to be compared is usually
needed. For illustrative purposes, we choose here one of the simplest detrending techniques: we subtract a moving average,
calculated within a time window of length τ, from the original time series.

We calculate the time evolution of the JJA correlation coefficient for two different members of the MPI-HE using the above-
described technique, and we compare several values of the freely chosen parameters Δt and τ (including a calculation without
detrending, too). In Supplementary Fig. S4, we compare the results to each other, to the actually observed time evolution (the
forced response) in the ensemble, and to an estimate obtained by linearly regressing the Fisher-transform z of the correlation
coefficient to the radiative forcing Q (see part VII of the Supplementary Material, and Supplementary Table S4 in particular). It
is obvious that the traditionally evaluated signals exhibit very little similarities with the correctly evaluated one and with the
linear regression. In particular, the fluctuations are typically much larger, and long periods exhibiting apparent, false trends can
be seen.  This  particular  example  is  not  sensitive  to  detrending,  but  the  choice  for  the  time window  Δt,  over  which  the
correlation coefficient is evaluated, is important: with increasing  Δt, the fluctuations become smaller, but the length of the
periods with false trends increases (and, as a result, the slope of these false trends decreases). Nevertheless, the main character
of the signal in a particular realization is similar for different values of Δt.

Note that both realizations can serve as an example for what can be instrumentally recorded on a planet whose climate system
is described by the MPI-ESM, and which is subject to the historical forcing. It is then striking to see how different time
evolution (“forced response”) can be obtained for the correlation coefficient in our two examples. On our hypothetical planet,
climatologists in realization 1 (red in Supplementary Fig. S4) would conclude that the teleconnection between the ENSO and
the  Indian  summer  monsoon  underwent  a  very  strong  strengthening  in  the  20th century,  from nearly  negligible  to  very
significant.  On the same planet with the same forcing, climatologists in realization 3 would identify,  from generally high
values, a strong drop in the 1960s in the strength of the teleconnection, from which the strength can hardly “recover”. This
strong dependence on the particular realization (note that all realizations are equally probable) illustrates that it is very hard (or
maybe impossible) to draw conclusions about the forced response of the strength of teleconnections to greenhouse-gas forcing
based on a single realization. For a more detailed analysis in an intermediate-complexity climate model, see Herein et al.
(2017).

The instrumental observation shown by Yun and Timmermann (2018) ― without performing a formal statistical test ― can be
seen to pass as a possible realization of the MPI-ESM, showing a large variability throughout the 20 th century. The instrumental
observation shown by Krishna Kumar et al. (1999) has a very different character: it is a “hockey stick”, with considerably less
variability before 1980. Because of this characteristic did the authors suggest that the decline in the teleconnection could be an
emerging signal of forced response. If this feature were to be credited as objective, i.e., not an artifact, then it would prompt
that the MPI-ESM is missing a major effect in the ENSO-Indian monsoon teleconnection.

It is actually an open question if the fluctuations (“modulations”) of the correlation coefficient evaluated with respect to time in
a single realization are related to some low-frequency mode of internal variability (cf. Section 6 of the main text). Even in this
case, these fluctuations can be considered artificial from the point of view of a forced response, since they do not imply any
changes in the “true” correlation coefficient, the one that fully characterizes internal variability (see the mentioned Section).
However, the strong dependence on Δt suggests that at least the observed characteristics of the trend-like fluctuations in our
example do not have such an origin. In particular, they are presumably the manifestation of the effects described in Wunsch
(1999), Gershunov et al. (2000) and Yun and Timmermann (2018).
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Supplementary Fig. S4. The time evolution of the JJA correlation coefficient r, plotted as a function of the time t, between the
sea level pressure difference pdiff and the Northern Indian precipitation P, in two realizations of the MPI-HE. The red and the

blue line correspond to realizations 1 and 3, respectively. For comparison, the ensemble result and a linear regression (see see
part VII of the Supplementary Material, and Supplementary Table S4 in particular) are also included as a thin and a thick gray
line, respectively. In the different panels, different window lengths for the evaluation of the correlation coefficient (Δt) and for

the detrending (τ) are considered (in the upper row, no detrending is applied). See text for details.
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Part V. If radiative forcing were dynamical forcing with an instantaneous linear response

After the surprising result that response is detectable only in the radiatively most weakly forced setup (i.e., in the MPI-HE), we
investigate its implication for the dynamical role of the radiative forcing Q. Although our investigation works with rather naive
assumptions, the results will be indicative of some general conclusion.

In order to have an impression of what the ability of detecting a trend means, we check the sensitivity of our test of pMK0 to the
presence of a particular kind of a “mostly increasing trend” in the strength of the teleconnection. We define this kind of signal
as a linear increasing relation between the Fisher-transform z of the correlation coefficient and the radiative forcing Q (that is,
not the time t). We assume this relation to hold at any time instant, i.e., that the response to radiative forcing is instantaneous,
without any delay. We pose our assumption for the Fisher-transform z of the correlation coefficient instead of posing it for the
correlation coefficient r itself, because the value of the former (i.e., the area hyperbolic tangent of the latter) is unbounded, so
that possible deviations from linearity that arise from a bounded range can be excluded. Note that a strong implication of our
assumption is that the radiative forcing Q can serve as the dynamical forcing which the system is subject to.

By checking the sensitivity of our test to the kind of signal as defined above (not to be confused with climate sensitivity, i.e.,
the sensitivity of some statistics, or the entire distribution (Chekroun et al., 2011), of a variable of the climate system with
respect to a parameter), we mean that we look for the weakest such relation that results in a time series in which pMK0 detects a
trend at a significance level of 0.05 with a given probability q = P(pMK0 < 0.05). We take the actual radiative forcing scenarios
and  ensemble  sizes,  and  assume the  same  temporal  mean  for  the  Fisher-transform  z as  the  one  observed  in  the  actual
ensembles. See part VI of the Supplementary Material for the details of our Monte Carlo algorithm, which is based on 100000
random time series for the circumstances of each ensemble, and which estimates the probability  q =  P(pMK0 < 0.05) as the
corresponding proportion among these 100000 time series.

The slope χ between the Fisher-transform z of the correlation coefficient and the radiative forcing Q assuming an instantaneous
linear relation between these two variables (the latter of which represents the dynamical forcing under the given assumption)
is, in fact,  the static susceptibility (the Fourier transform of the response function taken at zero frequency) of the former
variable with respect to the latter one in the terminology of nonequilibrium statistical mechanics (Kubo et al., 1991); see Ruelle
(2009) for susceptibilities in dynamical systems. Supplementary Table S2 gives the results for the sensitivities of our test of
pMK0 in the form of the smallest slopes χ that would just be detected with two given probabilities q: q = 0.50 gives the turning
point to a more probable detection of the trend than not, and  q = 0.95 gives a trend that is “almost certainly” detected. In
Supplementary Table S2, the values of the correlation coefficient  r that would be present at the beginning and the end of the
given simulations with the obtained slopes are also shown.

The results in Supplementary Table S2 indicate that our hypothesis test is, in terms of the slope, much less sensitive in the
MPI-HE than in the other three ensembles (i.e., hypothetical nonstationarities of the time series associated with small slopes χ
are  not  detectable  in  the  MPI-HE,  only  those  in  association  with  steep  ones),  while  these  other  three  ensembles  are
characterized by sensitivities similar to each other. The former finding is a natural consequence of the particular ranges of the
radiative forcing  Q in the particular ensembles: this range is small in the MPI-HE (see Fig. 1), therefore,  a steep slope  χ
(steeper by a factor of 3) is needed to be present to detect a similar ”mostly increasing trend” of the time series of z as in the
other ensembles. Note, however, the counterintuitive nature of the fact that the MPI-HE is the least sensitive ensemble in terms
of the slope (i.e., unlike in the other ensembles, small slopes cannot be detected), yet it is the only ensemble in which we could
actually detect nonstationarity (a nonzero slope). The sensitivity in terms of an other measure, in that of the change in the
correlation coefficient r from the beginning to the end of the simulations, i.e., in terms of the detectable signal in r, is similar in
all ensembles.
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q = P(pMK0 < 0.05)  χ [1/(Wm-2)] r at the beginning r at the end

MPI-HE 0.50 0.046 0.39 0.47

0.95 0.086 0.36 0.51

MPI-RCP8.5E 0.50 0.013 0.41 0.48

0.95 0.024 0.38 0.50

MPI-1pctE 0.50 0.014 0.41 0.47

0.95 0.026 0.38 0.50

CESM-LE 0.50 0.013 0.07 0.16

0.95 0.024 0.04 0.21

Supplementary Table S2. The slope χ of the weakest linear increasing relation between the Fisher-transform z of the
correlation coefficient and the radiative forcing Q that is detected by pMK0 at the significance level of 0.05 with a probability q,

under the circumstances of the given ensembles. The corresponding values of the correlation coefficient r are given for the
beginning and the end of the simulations.

q = P(pt12 < 0.05)  χ [1/(Wm-2)] r at the beginning r at the end

MPI-HE 0.50 0.063 0.38 0.49

0.95 0.121 0.33 0.54

MPI-RCP8.5E 0.50 0.014 0.41 0.48

0.95 0.027 0.38 0.51

MPI-1pctE 0.50 0.016 0.40 0.48

0.95 0.030 0.37 0.51

CESM-LE 0.50 0.014 0.06 0.17

0.95 0.026 0.03 0.22

Supplementary Table S3. The slope χ of the weakest linear increasing relation between the Fisher-transform z of the
correlation coefficient and the radiative forcing Q that is detected by pt12 at the significance level of 0.05 with a probability q,

under the circumstances of the given ensembles. The corresponding values of the correlation coefficient r are given for the
beginning and the end of the simulations.

The same investigation of the sensitivity has been carried out for the test of p t12 as well. The results, given in Supplementary
Table S3, lead to the same conclusions as for the test of pMK0. However, the quantitative values have to be treated with caution,
since we explicitly deviate here from the assumptions of the  t-test (see Appendix C) by using a linear relation between the
Fisher-transform z of the correlation coefficient and the ever-changing forcing.

To sum up, we actually detected nonstationarity in the MPI-HE, in which a hypothetical nonstationarity is “detectable” only if
it is associated with a slope χ 3 times steeper than those that make nonstationarity “detectable” in the other ensembles. At the
same time, we could not reject stationarity in the other ensembles. This means that, in terms of a linear and instantaneous
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relation, the strength of the response to radiative forcing, i.e., the static susceptibility χ, is estimated to be at least 3 times larger
in the MPI-HE than in any of the other three ensembles. For the direct estimation of  these susceptibilities, see part VII of the
Supplementary Material.

Note that our assumption of a linear response corresponds to the existence of a single value of the static susceptibility χ. Our
results  indicate  that  this  can  be true sectionwise  at  most.  A sectionwise  linearity  with slopes different  by a  factor  of  3,
especially for the forcings presented in Fig. 1, does not seem to be plausible. That is, some of our assumptions must be grossly
wrong, as we discuss further in Section 6 of the main text.
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Part VI. Estimating the sensitivity of the Mann-Kendall test in the particular ensembles

Besides the pMK0 value according to which we reject or not stationarity, it is also important to know how strong nonstationarity
needs to be present for a rejection — this is what we regard as the sensitivity of the Mann-Kendall test. This sensitivity, of
course, depends on the particular choice of the significance level psig for rejection.

Without additional constraints for the nonstationary signal, the sensitivity cannot be determined. With regards to the underlying
physical  process,  we determine the sensitivity to the presence  of an instantaneous,  linear  increasing relation between the
Fisher-transform z of the correlation coefficient and the radiative forcing Q (i.e., not the time t).

By choosing an instantaneous relation we neglect the delay that is certainly present (Herein et al., 2016); this delay can be,
however, assumed to be small compared to the time scale of the changes in the entire simulations. Unfortunately, we would be
able to estimate the delay only if we knew the precise time series of the Fisher-transform z. It is even more important to recall
from Section 2 of the main text that the radiative forcing Q is not the dynamical forcing which the system is subject to. By
assuming a functional relationship between a variable (the Fisher-transform  z in our case) and the radiative forcing  Q, we
implicitly also assume that the latter can serve as the dynamical forcing. This can be regarded as an approximation, which can
prove to be invalid if the data does not fit well to the assumed functional relationship. At least for the MPI-HE, a reasonable fit
can be found (cf. Supplementary Table S4 and Supplementary Fig. S5), but note that this does not imply that the assumption or
approximation is principally correct.

Assuming the linear relation defined above, we look for the weakest slope that results, under the imposed forcing of each
simulation, in a time series that is rejected by the Mann-Kendall test to miss any monotonic trend (in what follows, we shall
call this as the weakest nonstationarity that is 'detectable' or 'detected').  Note that the radiative forcing is different in each
ensemble simulation analyzed in our study, which is one reason why we have to carry out the estimation separately for each
ensemble. Although there is a forcing scenario, the historical one, in which the radiative forcing Q is not perfectly monotonic
in time, a rejection still implies in this case that the corresponding, nonmonotonic time series of the Fisher-transform z cannot
be stationary.

The linear dependence of the Fisher-transform z on the forcing with a given slope still does not determine the observed time
series of z. Instead, each data point (corresponding to one particular year) in this time series is a sample drawn from a Gaussian
distribution, the mean of which is the actual  Fisher-transform  z in the given year,  and the standard deviation of which is
1 /√ (N −3 ) , where N is the ensemble size (Fisher, 1936). (Note that this implies that data points of different years are drawn

from different distributions, which differ in their mean, but not in their shape and standard deviation.) Because of the stochastic
nature of the generation of the series, the weakest nonstationarity that is detectable cannot be determined definitely. For this
reason, we proceed as follows, separately for each ensemble.

We assume that a particular slope is present, and we generate 100000 different time series according to the time-dependent
distribution described in the previous paragraph. Among these 100000 different time series, the proportion q of those in which
rejection occurs is our Monte Carlo estimate for the probability P of detecting the nonstationarity. By varying the slope with
successive approximation, we find the slope that corresponds to a given, prescribed detection probability q = P(p < psig). Two
intuitive choices for q are q = 0.50, which gives the turning point to a more probable detection of the trend than not, and q =
0.95, which gives a trend that is “almost certainly” detected. The slope obtained this way is what we regard to characterize the
sensitivity of the Mann-Kendall test to our assumed form of nonstationarity.
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Part VII. A direct estimation of the susceptibilities

Here we directly estimate the susceptibilities  χ  discussed in part V of the Supplementary Material.  If we assume a linear
response in terms of the Fisher-transform z of the correlation coefficient as a function of the radiative forcing Q, the maximum
likelihood  estimate  is  given  by  the  least  squares  linear  regression  (Press,  2007),  since  the  errors  of  the  data  points,  as
mentioned,  come  from  a  Gaussian  distribution  with  the  same  standard  deviation  (Fisher,  1936),  and  were  found  to  be
independent from each other. Supplementary Table S4 gives the parameters, with their uncertainty, of the numerically fitted
lines of the form of z = z0 + χQ. It becomes obvious that we cannot conclude about any pronounced relationship in the cases of
the MPI-RCP8.5E, the MPI-1pctE, and the CESM-LE, while we find a well-fitting, positive-sloped line in the MPI-HE. This
finding is also confirmed by the direct visual observation of the Fisher-transform z of the correlation coefficient as a function
of the radiative forcing Q, shown in Supplementary Fig. S5. (Note in this figure that the regression line, i.e., the most likely
linear relationship, is always less steep than what would be detectable by pMK0 more probably than not (q = 0.50), except for the
MPI-HE, in harmony with our finding that we can reject stationarity only for the MPI-HE.)

Since the relationship between the Fisher-transform z of the correlation coefficient and the radiative forcing Q has been found
to be approximately linear, and Q increases mostly in the second half of the 20th century within the time span of the MPI-HE
(see Fig. 1), we conclude that the increase in the strength of the teleconnection between the ENSO and the Indian monsoon is
also concentrated to this period. This is confirmed by Fig. 4. 

χ [1/(Wm-2)] z0

MPI-HE 0.073 ± 0.016 0.392 ± 0.016

MPI-RCP8.5E -0.0004 ± 0.006 0.482 ± 0.033

MPI-1pctE 0.008 ± 0.008 0.421 ± 0.048

CESM-LE 0.009 ± 0.006 0.065 ± 0.027

Supplementary Table S4. The parameters, with their standard errors, of the least squares linear regression z = z0 + χQ between
the Fisher-transform z of the correlation coefficient and the radiative forcing Q, in the different ensembles.
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Supplementary Fig. S5. The Fisher-transform z of the correlation coefficient as a function of the radiative forcing Q, plotted
with lines connecting neighboring datapoints. Thin and thick black lines correspond to the weakest linear increasing relations,

from Supplementary Table S2, that would be detectable by pMK0 at a significance level of 0.05 with a probability of q = 0.50
and q = 0.95, respectively. The thick orange line is the least squares linear regression from Supplementary Table S4. The

different panels consider different ensembles.
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Part VIII. The climatic mean’s forced response as obtained by temporal averaging

We shall check here what is obtained numerically in the phase-space projection chosen in our paper when the climatic mean is
calculated by the traditional technique, which takes a temporal average for one time series (corresponding to a single member
in the ensemble). For a shifting time series, a moving average needs to be taken to obtain the time evolution of the climatic
mean.

For this investigation, we shall consider an arbitrarily chosen member of the MPI-1pctE. For reference, the ensemble result
(the counterpart of Fig. 5a or 5b) is given in Supplementary Fig. S6.

Supplementary Fig. S7 presents the numerical results obtained with the traditional technique for different window lengths τ. It
is obvious for τ = 11yr (Supplementary Fig. S7a) that the internal variability is so strong that each month appears as a cloud of
points without a prominent structure.  Nevertheless,  the clouds are elongated to some extent, and this elongation might be
thought to represent the linear behavior identified in Fig. 5a and similarly present in Supplementary Fig. S6. However, due to
the inability of separating the effect of the internal variability from the forced response, we could not find any well-grounded
method to fit lines to the clouds of points. A visual inspection may find the main direction of the elongation to be less steep in
each month than the slope of the corresponding line in Supplementary Fig. S6. The reason for this is the much larger internal
variability in pdiff than in P. We thus learn that variable-dependent internal variability may introduce systematic errors into the
interpretation of the time evolution represented in the corresponding phase-space projection.

One might try to filter out internal  variability using longer windows. In Supplementary Figs. S7b-d, the sets of points of
individual months become less fuzzy indeed, they appear like curves instead of clouds. Since the ratio between the extension
due to a real trend (the real response) and that due to internal variability (a signal to noise ratio) increases, the overall directions
of the particular sets of points tend to get closer to the correct ones. Locally, however, we are facing very strong false trends for
τ = 31yr and 61yr (Supplementary Figs. S7b-c): the local tangent of the curves deviates from the correct one (i.e., from the
direction of the lines in Supplementary Fig. S6) by more than 90 degrees for sections corresponding to several decades. This
means trends that are incorrect in their sign for the individual variables. Such false trends are characteristic to moving averages
(Wunsch, 1999), and similar effects have been pointed out by Drótos et al. (2015) for one variable in the same context of
climatic averages.

For τ = 91yr (Supplementary Fig. S7d), the false trends disappear, but the directions of the curves are still not reliable (note the
spread between the different months from June to October, which is not present in Supplementary Fig. S6). At the same time,
we are close here to reaching the upper bound for τ imposed by the length of the original data. To sum it up, we have found that
temporal averaging for calculating responses in climatic means fails for the simulations considered in this paper. As for more
extended data sets for  which  τ can be further  increased,  nonlinearities  might appear in the response,  for  which temporal
averaging introduces biases (Herein et al., 2016; Drótos et al., 2016). Therefore, temporal averaging cannot be applied without
additional considerations in such cases either.
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Supplementary Fig. S6. Same as Fig. 5a or 5b for the MPI-1pctE.

Supplementary Fig. S7. The traditional climatic mean (obtained as a temporal average) in the sea level pressure difference pdiff

and the Northern Indian precipitation P. All different months are plotted, see the numbering (1-12: January-December). For a
given month or season, each data point represents a particular year, on which the time window for averaging is centered. The

different years are colored according to the color scales on the right. The different panels correspond to different window
lengths τ, as indicated.
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